

Cubit 13.2 User Documentation

iii

Table of Contents

1. CUBIT 13.2 User Documentation __ 1

2. Key Features __ 3
Geometry Creation, Modification, and Healing 3
Non-Manifold Topology 3
Geometry Decomposition 3
Mesh Generation 3
Boundary Conditions 3
Element Types 4
Graphics Display Capabilities 4
Graphical User Interface 4
Command Line Interface 4

3. Hardware Requirements __ 5

4. Licensing, Distribution and Installation __ 7

5. Trademark Notice __ 9

6. How to Use This Manual ___ 11

7. Introduction __ 13

8. CUBIT Mailing Lists ___ 15

9. Problem Reports and Enhancement Requests ___ 17

10. Starting and Exiting a CUBIT Session __ 19
Starting the Session 19
Windows File Association 19
Exiting the Session 19
Resetting the Session 19
Abort Handling 19

11. Execution Command Syntax __ 21

12. Initialization Files ___ 25

13. Environment Variables ___ 27

14. Command Syntax ___ 29

15. Command Line Help ___ 31

16. Environment Commands ___ 33
Working Directory 33

Cubit 13.2 User Documentation

iv

File Manipulation 33
CPU Time 34
Comment 34
History 34
Error Logging 34
Determining the CUBIT Version 34
Echoing Commands 34
Digits Displayed 34

17. Saving and Restoring a Cubit Session __ 37
CUBIT File Method 37

New 37
Open '<filename>' 37
Save 37
Import 38
Export 38

18. Interrupting Running Tasks ___ 39

19. CUBIT Application Window ___ 41
Context Sensitive Help in the GUI 42
Customizing the Application Window 42
Interrupting Running Tasks 44

20. Command Panel Functionality __ 45
ID Input Entry Methods 46
Right-Click Context Menu for ID Input Fields 47
Value Fields 47
Advancing Pickwidgets 48

21. View Navigation in the GUI ___ 49
Rotations 49
Zooming 50
Panning 51

22. Selecting Entities in the GUI __ 53
Pre-Selection 53
Polygon and Box Select 54

23. Key Press Commands for the GUI ___ 55

24. Right Click Commands for the GUI Graphics Window ___ 57
With Entity Selected 57
Without Entity Selected 57

25. Repositioning Nodes in the GUI ___ 59
Moving Nodes by XYZ offsets 59
Moving Nodes Normal to Surfaces 60

Table of Contents

v

26. Viewing Curve Valence ___ 63

27. Geometry Tree __ 65
Drag and Drop 67
Picked Group 67
Right-Click Menu Functions 67

28. Geometry Power Tools ___ 69
Geometry Analysis Tools 69
Geometry Repair Tools 71
Right Click Menu 73

29. Meshing Tools __ 75
Right Click Context Menu 75

30. Mesh Quality Tools __ 77
Mesh Quality Tool Buttons 78
Right-Click Context Menu Items 78

31. Property Editor ___ 79
Editing Entity Attributes from the Property Editor 80

General Attributes 80
Geometry Attributes 80
Meshing Attributes 80
Boundary Condition Attributes 81
Metadata Attributes 81

32. Command Line Workspace ___ 83
Command Window 83

Entering Commands 83
Repeating Commands 83
Focus Follows Cursor 83
Interrupting Running Tasks 84

Error Window 84
History Window 84
Script Window 84
Docking and Undocking the Input Window 85

33. Journal File Editor __ 87
Journal Editor Toolbar 88
Other Functionality Available in the Journal Editor 88

34. Toolbars ___ 89
File 89
Display 89
Select 90

35. Options Menu __ 91
Custom Tools 91
Display Preferences 91
General Preferences 91
Geometry Defaults 92

Cubit 13.2 User Documentation

vi

History Preferences 92
Cubit History Preferences 92

Label Defaults 92
Layout Preferences 92

Cubit Layout Settings 93
Mesh Defaults 93
Mouse Settings 93
Post Processor Settings 93
Quality Defaults 93

36. Creating Custom Toolbar Buttons ___ 95

37. Undo Button ___ 97
Limitations 97

38. Journal File Creation and Playback __ 99
Recording a Session 99
Replaying a Session 99

39. Controlling Playback of Journal Files ___ 101

40. Automatic Journal File Creation __ 103
Controlling Automatic Journal File Creation 103
Recording Graphics Commands 103
Recording Entity IDs and Names 103
Recording APREPRO Commands 103
Recording Errors 104

41. Idless Journal Files __ 105

42. Command Line View Navigation: Zoom, Pan and Rotate __ 107
Rotation 107
Panning 107
Zooming 107

43. Mouse Based View Navigation: Zoom, Pan and Rotate ___ 109
Changing the View Transformation Button Bindings 110
Saving and Restoring Views 110

44. Updating the Display ___ 113
Prevent Graphics From Updating 113

45. Graphics Modes ___ 115
Displaying Using the Element Facets 116
Displaying Composite Surface Lines 116

46. Drawing and Highlighting Entities __ 117
Drawing Other Objects 117

Displaying Entity Orientation 117
Volume Sources and Targets 118
Model Axis 118

Table of Contents

vii

Surface Isoparameter Lines 118
Surface Overlap 118
Volume Overlap 118
Geometry Preview 118

47. Mesh Visualization ___ 121
Notes on Mesh Slicing 121
Mesh Slicing Command 121

48. Graphics Clipping Plane __ 123
Examples 124

49. Entity Labels __ 125

50. Colors ___ 127
Specifying Colors in Commands 127
User-Defined Colors 127
Assigning Colors 128
Assigning Global Colors 128

51. Geometry and Mesh Entity Visibility ___ 131

52. Graphics Camera __ 133
Changing Camera Attributes Directly 133

53. Graphics Lighting Model __ 135

54. Graphics Window Size and Position ___ 137
Using Multiple Windows 137

55. Saving Graphics Views ___ 139

56. Hardcopy Output __ 141
Screen Capture Programs 141

57. Miscellaneous Graphics Options ___ 143
Silhouette Lines 143
Line Width 143
Highlight Line Width 143
Text Size 143
Point Size 144
Graphics Status 144
Graphics Scale 144
Model Axis 144
Corner Axis (Triad) 144
Resetting the Graphics 144
Shrink 145
Facet Tolerance 146

58. Command Line Entity Specification ___ 147
Types of Entity Range Input 147

Cubit 13.2 User Documentation

viii

Precedence of "Except" and "In" 148
Placement in CUBIT Commands 149

59. Entity Selection __ 151

60. Environment Control ___ 153

61. Extended Command Line Entity Specification __ 155
Extended Parsing Syntax 155
Keywords 155
Functions 156
Precedence 157

62. Selecting Entities with the Mouse ___ 159
Entity Selection 160
Query Selection 161
Multiple Selected Entities 161
Information About the Selection 161
Picked Group 161
Substituting Selection into Other Commands 161

63. Specifying a Location ___ 163
Position (XYZ values) 163
Last Location Used in a Command 163
Node or Vertex 163
On a Curve 164
On a Surface 164
On a Plane 164
Center 164
Extrema 164
Fire Ray 164
Between 164
Move 165
Swing 165
Multiple Location Specification 166
Previewing a Location 166

64. Specifying a Location on a Curve ___ 167
Start, Midpoint, or End 167
Fraction 167
Distance 167
{Close_To|At} Location 168
Extrema 168
Segment 168
Crossing 168
Previewing a Location on a Curve 168

65. Specifying a Direction __ 169
Vector (XYZ values) 169
Last Direction Used 169
Positive or Negative X,Y,Z Direction Vectors 169
On Curve Tangent 169
On Surface Normal 170

Table of Contents

ix

From Location 170
Rotate 170
Cross 171
Reverse 171
Previewing a Direction 171

66. Specifying an Axis ___ 173
Last 173
Specify an origin and a vector 173
Revolve an axis about an axis 173
Previewing an Axis 174

67. Specifying a Plane ___ 175
Location and Normal Vector 175
Location and Two Vectors on the Plane 175
Two Locations and Vector on the Plane 176
Three Points on the Plane 176
Plane defined by a Surface 177
Plane Normal to a Curve 177
Plane Defined by a Non-linear curve 178
Plane Defined by a two linear curves 178
Normal Vector and Coefficient 178
Coordinate Plane 179
Last Location Used 179
Previewing a Plane 179
Preview a Cylindrical Plane 179

68. Drawing a Location, Direction, or Axis ___ 181

69. List Model Summary __ 183

70. List Geometry ___ 185

71. List Mesh ___ 187

72. List Special Entities __ 189

73. List Cubit Environment ___ 191
Message Output Settings 191
Graphical Display Information 193
Memory Usage Information 193

74. ACIS Geometry Kernel __ 195

75. Granite Geometry Kernel __ 197

76. Mesh-Based Geometry __ 199
Creating Mesh-Based Geometry Models 199
Improving Mesh-Based Geometry Models for Meshing 200
Meshing Mesh-Based Models 201
Exporting Mesh-Based Geometry 201

Cubit 13.2 User Documentation

x

77. Importing ACIS Files __ 203
Import Options 203
Importing ACIS files at startup 203

78. Importing FASTQ Files __ 205

79. Importing STEP Files ___ 207
Import Options 207
Exporting a STEP file from Pro/Engineer 207

80. Importing IGES Files ___ 209
Import Options 209

81. Importing Facet Files ___ 211
Facet File Format 212
Feature Angle 212
Smooth Curves and Surfaces 212
Merge 212
Make elements 212
Stitch 213
Improve 213

Table of Contents

xi

82. Importing Granite Files ___ 215

83. Creating Vertices __ 217

84. Creating Curves ___ 219

85. Creating Surfaces __ 223

86. Creating Bodies ___ 231

87. Creating Bricks __ 239

88. Creating Cylinders ___ 241

89. Creating Prisms ___ 243

90. Creating Frustums ___ 245

91. Creating Pyramids ___ 247

92. Creating Spheres __ 249

93. Creating Toruses___ 251

94. Align Command ___ 253

95. Copy Command ___ 255

96. Move Command ___ 257
Moving Other Geometric Entities 257
Moving Bodies Relative to Other Geometric Entities 257
Moving Merged Entities 257
Move Undo 258

97. Scale Command ___ 259

98. Rotate Command __ 261
Rotating Merged Entities 261

Cubit 13.2 User Documentation

xii

99. Reflect Command __ 263

100. ___ I
ntersect __ 265

101. ___ S
ubtract ___ 267

102. ___ U
nite __ 269

103. ___ C
hop Command ___ 271

104. ___ W
eb Cutting by Sweeping Curves or Surfaces __ 273

Web Cutting by Sweeping a Surface Along a Trajectory 273
Web Cutting by Sweeping a Surface About an Axis 274
Web Cutting by Sweeping a Curve(s) Along a Trajectory 274
Web Cutting by Sweeping a Curve(s) About an Axis 274

105. ___ W
eb Cutting Options ___ 275

106. ___ W
eb Cutting with a Planar or Cylindrical Surface __ 277

Coordinate Plane 277
Planar Surface 277
Plane from 3 Points 277
Plane Normal to Curve 277
General Plane Specification 278
Cylindrical Surface 278

107. ___ W
eb Cutting using a Tool or Sheet Body ___ 279

108. ___ W
eb Cutting with an Arbitrary Surface __ 281

109. ___ S
plit Curve ___ 283

110. ___ S
plit Periodic Surfaces ___ 285

111. ___ S
plit Surface ___ 287

Split Across 287
Split Extend 288
Split (Automatically) 290
Split Skew 302

Table of Contents

xiii

112. ___ S
ection Command ___ 303

113. ___ S
eparating Multi-Volume Bodies ___ 305

114. ___ S
eparating Surfaces from Bodies __ 307

115. ___ A
nalyzing Geometry ___ 309

Healer Settings 309

116. ___ H
ealing Attributes ___ 311

117. ___ A
uto Healing ___ 313

118. ___ S
pline Removal ___ 315

119. ___ W
hat if Healing is Unsuccessful? ___ 317

120. ___ T
weaking Vertices ___ 319

Tweaking a Vertex With a Chamfer 319
Tweaking a Vertex With a Non-Equal Chamfer 319
Tweaking a Vertex With a Fillet Radius 320

121. ___ T
weaking Curves ___ 321

Create a Chamfer or Fillet 321
Tweaking a Curve Using an Offset Distance 322
Removing a Curve 322
Tweaking a Curve Using Target Surfaces, Curves, or Plane 323
Tweaking a Pair of Curves to a Corner 324

122. ___ T
weaking Surfaces __ 327

Tweaking a Surface Using an Offset 327
Tweaking a Surface by Moving 327
Tweaking Surfaces to Target Surfaces 328
Removing a Surface 328
Tweaking a Conical Surface 328
Tweaking Doublers to Target Surfaces 329
Removing Holes and Slots from Sheet Bodies 331
Removing Fillets from Sheet Bodies 332

123. ___ T
weak Remove Topology ___ 335
Example 335

Cubit 13.2 User Documentation

xiv

124. ___ T
weak Volume Bend ___ 339

125. ___ R
emoving Vertices __ 341

126. ___ R
emoving Surfaces __ 343

Remove Sliver Surface 343

127. ___ A
utomatic Forced Sweepability __ 345

128. ___ A
utomatic Small Curve Removal ___ 347

129. ___ A
utomatic Small Surface Removal ___ 349

130. ___ A
utomatic Surface Split __ 351

131. ___ R
egularizing Geometry ___ 353

132. ___ F
inding Surface Overlap ___ 355

Facetted Representation 355
Find Overlap Settings 356

133. ___ V
alidating Geometry ___ 359

134. ___ D
ebugging Geometry __ 361

135. ___ G
eometry Accuracy __ 363

136. ___ T
rimming and Extending Curves ___ 365

Trimming a Curve 365
Extending a Curve 366

137. ___ S
titching Sheet Bodies ___ 367

138. ___ I
mprinting Geometry __ 369

Regular Imprinting 369
Tolerant Imprinting 369
Mesh-Based Imprinting 370

Table of Contents

xv

Imprint Settings 370

139. ___ M
erging Geometry ___ 371

Merge geometry automatically 371
Test for merging in a specified group of geometry 371
Force merge specified geometry entities 371
Preventing geometry from merging 371
Other Merge Commands 372

140. ___ E
xamining Merged Entities ___ 373

141. ___ M
erge Tolerance___ 375

Finding Nearly Coincident Entities 375

142. ___ U
nmerging ___ 377

143. ___ U
sing Geometry Merging to Verify Geometry ___ 379

144. ___ C
omposite Curves ___ 381

145. ___ C
omposite Surfaces ___ 383

Controlling the Surface Evaluation Method for Composite Surfaces 383
Composite Determination 383

146. ___ P
artitioned Curves __ 385

147. ___ P
artitioned Surfaces ___ 387

Partitioning with Vertices and Nodes 387
Partitioning with Hard Points 387
Partitioning with Polylines 387

Partitioning with Curves 388
Partitioning with Mesh Edges 388
Partitioning with Faces or Triangles 388

Cubit 13.2 User Documentation

xvi

148. ___ P
artitioned Volumes ___ 389

149. ___ U
sing Mesh Intersections to Partition Surfaces ___ 391

150. ___ R
emoving Partitions ___ 393

151. ___ C
ollapse Angle __ 395

152. ___ C
ollapse Curve ___ 399

153. ___ C
ollapse Surface __ 401

154. ___ S
implify Geometry __ 403

Feature Angle 404
Automatically Compositing Curves 404
Respecting Vertices, Curves and Surfaces 404
Respecting Imprints 404
Using Local Normals 405
Other Options 405

155. ___ D
eleting Virtual Geometry __ 407

Removing Virtual Geometry 407
Using The Delete Command With Composites 407
Using the Delete Command With Partitions 407

156. ___ G
eometry Orientation __ 409

Adjusting Orientation 409

157. ___ B
asic Group Operations __ 411

Geometry Groups 411
Modifying groups by comparing common entities 411
Group Booleans 411
Mesh Groups 412
Group Copy 412
Group Transformations 412
Deleting Groups 413
Cleaning Out Groups 413

Table of Contents

xvii

158. ___ G
roups in Graphics __ 415

159. ___ P
ropagated Hex Groups __ 417

Propagated Hex Group Starting on a Surface 417
Ending at a Surface 417
Number of Times 417
Ending at a Surface with Multiple 417
Number of Times with Multiple 418
Ending at Surface with Direction 418
Number of Times with Direction 418

Propagated Hex Group Starting on a Face 418
Ending at a Surface 419
Ending at a Face 419
Number of Times 419
Ending at a Surface with Multiple 419
Ending at a Face with Multiple 419
Number of Times with Multiple 420
Ending at Face with Direction 420
Ending at Surface with Direction 420
Number of Times with Direction 420

Naming Convention for Propagated Hex Groups 421

160. ___ S
eeded Mesh Groups __ 423

161. ___ Q
uality Groups __ 425

162. ___ E
ntity Names ___ 427

Valid and Invalid Names 427
Reconciling Duplicate Names 427
Automatic Name Creation 427
Automatic Name Propagation 428
Naming Merged Entities 428

163. ___ E
ntity IDs __ 431

Gaps in ID space 431
Renumbering IDs 431
Volume ID 431

164. ___ A
ttribute Behavior ___ 433

165. ___ A
ttribute Types ___ 435

166. ___ A
ttribute Commands ___ 437

Control By Attribute Type or Geometric Entity 437

Cubit 13.2 User Documentation

xviii

167. ___ U
sing CUBIT Attributes ___ 439

168. ___ E
ntity Measurement ___ 441

Measure Between 441
Measure Small 441
Measure Angle 441
Measure Void 442

169. ___ W
orking With Parts and Assemblies __ 443

Identifying Parts and Assemblies 443
Creating Parts and Assemblies 443
Deleting Parts and Assemblies 443
Associating Parts with Volumes 444
Viewing All Assembly Information at Once 444

170. ___ M
etadata Attributes __ 447

Part and Assembly Metadata Attributes 447
Viewing Part and Assembly Metadata Attribute Values 448
Modifying Metadata Attributes 448
Viewing and Modifying Global Metadata 448

171. ___ I
mporting and Exporting Metadata __ 451

Importing Metadata 451
Exporting Metadata 451
Importing and Exporting DART Artifacts 451

172. ___ E
xporting ACIS Files ___ 453

173. ___ E
xporting STEP Files __ 455

174. ___ E
xporting IGES Files ___ 457

175. ___ E
xporting Granite Files ___ 459

176. ___ E
xporting Facet Files __ 461

177. ___ G
eometry Deletion ___ 463

178. ___ M
eshing the Geometry ___ 465

Default Scheme and Interval Selection 465
Continuing Meshing After a Mesh Failure 465

Table of Contents

xix

179. ___ I
nterval Firmness ___ 467

Precedence 467

180. ___ E
xplicit Specification of Intervals __ 469

181. ___ A
utomatic Specification of Intervals __ 471

Default auto interval specification 472
Maximum Spanning Angle on Arcs 472

182. ___ I
nterval Matching ___ 475

183. ___ P
eriodic Intervals ___ 477

184. ___ R
elative Intervals __ 479

185. ___ M
esh Interval Preview __ 481

186. ___ B
ias, Dualbias __ 483

187. ___ C
ircle ___ 485

188. ___ C
urvature __ 487

189. ___ E
qual ___ 489

190. ___ H
ole ___ 491

191. ___ M
apping ___ 493

192. ___ P
ave __ 495

Element Shape Improvement 495
Controlling Flattening of Elements 495
Controlling the Grid Search for Intersection Checking 496
Controlling the Paver Sizing Function 496
Controlling Paver Cleanup 496

Cubit 13.2 User Documentation

xx

193. ___ P
entagon __ 499

194. ___ P
inpoint ___ 501

195. ___ P
olyhedron __ 503

196. ___ S
phere __ 505

197. ___ S
Transition ___ 507

198. ___ S
tretch __ 511

199. ___ S
tride ___ 513

200. ___ S
ubmap ___ 515

201. ___ S
urface Vertex Types __ 517

Surface Vertex Commands 517
Listing and Drawing Vertex Types 518
Triangle Vertex Types 518
Adjusting the Automatic Vertex Type Selection Algorithm 518
Volume Curve Types 519

202. ___ S
weep ___ 521

Multisweep 523
Grouping Sweepable Volumes 525
Node Redistribution 525

203. ___ T
etMesh ___ 529

Discussion 529
Tetmesher Options 530
Using tets as the basis of an unstructured hexahedral mesh 531
Conforming the tetmesh to internal features 531
Generating a Tetmesh from a Skin of Triangles 532

Table of Contents

xxi

204. ___ T
etprimitive __ 533

205. ___ T
riDelaunay __ 535

206. ___ T
riAdvance __ 537

207. ___ T
riMap __ 539

208. ___ T
riMesh ___ 541

209. ___ T
riPave __ 543

210. ___ T
riPrimitive __ 545

211. ___ R
adialmesh __ 547

212. ___ H
Tet ___ 553

Unstructured 553
Structured 554

213. ___ Q
Tri ___ 555

214. ___ T
Hex __ 557

215. ___ T
Quad ___ 559

216. ___ C
opying a Mesh ___ 561

217. ___ M
irroring a Mesh __ 563

218. ___ A
utomatic Scheme Selection __ 565

Default Scheme Selection 565
Auto Scheme Selection General Notes 565
Scheme Firmness 566
Surface Auto Scheme Selection 566
Volume Auto Scheme Selection 567

Cubit 13.2 User Documentation

xxii

219. ___ P
arallel Meshing __ 569

220. ___ M
etrics for Edge Elements __ 571

Quality Metric Definitions: 571
Comments on Algebraic Quality Measures 571

221. ___ M
etrics for Triangular Elements __ 573

Approximate Triangular Quality Definitions: 573
Comments on Algebraic Quality Measures 574
References for Triangular Quality Measures 574

222. ___ M
etrics for Quadrilateral Elements ___ 575

Quadrilateral Quality Definitions 575
Comments on Algebraic Quality Measures 576
References for Quadrilateral Quality Measures 576
Details on Robinson Metrics for Quadrilaterals 577

223. ___ M
etrics for Tetrahedral Elements ___ 579

Tetrahedral Quality Definitions 579
References for Tetrahedral Quality Measures 580

224. ___ M
etrics for Hexahedral Elements ___ 581

Hexahedral Quality Definitions 581
References for Hexahedral Quality Measures 582

225. ___ M
esh Quality Command Syntax __ 583

Quality Options 583
Scope 583
Draw 583
List 584
Filter 584

226. ___ M
esh Quality Example Output ___ 587

227. ___ A
utomatic Mesh Quality Assessment ___ 591

228. ___ C
ontrolling Mesh Quality ___ 593

Skew Control 593
Propagate Curve Bias 593
Adjust Boundary 593

Table of Contents

xxiii

229. ___ C
oincident Node Check __ 595

230. ___ M
esh Topology Check __ 597

231. ___ C
entroid Area Pull ___ 601

232. ___ E
quipotential ___ 603

233. ___ L
aplacian __ 605

234. ___ S
mart Laplacian __ 607

235. ___ C
ondition Number ___ 609

236. ___ M
ean Ratio ___ 611

237. ___ W
inslow __ 613

238. ___ U
ntangle ___ 615

239. ___ E
dge Length ___ 617

240. ___ M
esh Refinement __ 619

Global Mesh Refinement 619
Refining at a Geometric or Mesh Feature 620
Hexahedral Refinement Using Sheet Insertion 622

Refining at a Geometric Feature 622
Refining along a path 622
Refining a Hex Sheet 623
Directional Refinement 624
Hex Sheet Drawing 626

Local Refinement of Triangles and Edges 626

241. ___ M
esh Pillowing __ 627

242. ___ M
esh Coarsening __ 629

Hexahedral Coarsening 629
Extracting a Single Hex Sheet 629
Extracting multiple sheets along a curve 629

Cubit 13.2 User Documentation

xxiv

Uniform hex coarsening 630

243. ___ N
ode and Nodeset Repositioning __ 631

244. ___ C
ollapsing Mesh Edges __ 633

245. ___ A
lign Mesh ___ 635

246. ___ C
reating and Merging Mesh Elements __ 637

Creating Mesh Elements 637
Creating Hex and Tet Elements 637
Creating Wedge Elements 638
Creating Face and Tri Elements 639
Creating Edge Elements 639
Creating Nodes 639

Merging Nodes 639

247. ___ C
leaning Up a Tetrahedral Mesh ___ 641

248. ___ M
esh Validity ___ 643

249. ___ G
eometry Adaptive Sizing Function (Skeleton Sizing) ___ 645

Skeleton Sizing Behaviors 647
Command Line Syntax 647
Basic Arguments 647

Scaling and Accuracy Arguments: 647
Advanced Arguments 648

Lattice Arguments: 648
Source Entity Arguments 648

Skeleton with Other Sizing Controls 648
Limitations 649

Table of Contents

xxv

250. ___ B
ias Sizing Function ___ 651

251. ___ C
onstant Sizing Function ___ 657

252. ___ C
urvature Sizing Function __ 659

253. ___ L
inear Sizing Function ___ 661

254. ___ I
nterval Sizing Function ___ 663

255. ___ I
nverse Sizing Function ___ 665

256. ___ E
xodus II-based Field Function __ 667

Curve Meshing with Exodus II - based Field Functions 668

257. ___ I
mporting Exodus II Files __ 669

Importing a Free Mesh Without Geometry 669
Importing a Mesh Onto Existing Geometry 670

Importing a Mesh with Nodeset Associativity 670
Importing a Mesh onto Modified Geometry 670
Mesh Import Tolerance 670
Specifying a Portion of the Mesh to be Imported 671
Unique Genesis IDs and Shell Options 671
Nodeset Ordering 671

Creating Mesh-Based Geometry on Import 671
File Name 671
Blocks 671
Start ID 672
Nodesets/Sidesets 672
Feature Angle 673
Smooth Curves and Surfaces 673
Apply Deformations 674
Merge 674
Merge Nodes 674
Export Facets 675

Importing a Preview Mesh 675

Cubit 13.2 User Documentation

xxvi

258. ___ I
mporting Abaqus Files __ 677

259. ___ I
mporting I-DEAS Files __ 679

260. ___ I
mporting Patran Files ___ 681

261. ___ I
mporting 2D Exodus Files ___ 683

262. ___ M
esh Deletion __ 685

Automatic Mesh Deletion 685

263. ___ F
ree Meshes ___ 687

Creating a free mesh 687
Disassociating a mesh from its geometry 687

Creating Mesh-Based Geometry to fit a Free Mesh 687
Merging a free mesh 688
Free Mesh Transformation Operations 688

Extruding Mesh Elements 688
Offsetting Mesh Elements 689
Revolving Mesh Elements 690

Smoothing a free mesh 691
Mesh quality on a free mesh 691
Mesh refinement on a free mesh 692
Cleaning up a free mesh 692
Assigning boundary conditions 692
Skinning a free mesh 693
Deleting free mesh elements 693
Bottom-up element creation 694
Exporting free meshes 694

264. ___ S
kinning a Mesh __ 695

265. ___ E
lement Block Specification __ 697

Creating Element Blocks 697
Assigning a Name or Description to an Element Block 698
Defining the Element Type 698
Default Element Blocks 698
Duplicate Block Elements 699
Assigning Attributes to Blocks 699
Displaying Element Blocks 699
Deleting Element Blocks 700
Automatically Assigning Mesh Edges to a Block (Rebar) 700

Diagonal and Orthogonal Rebar Blocks 700
Specifying a set of nodes 701

Creating Spider Blocks 702
Creating Beam Blocks 703
Creating Spring Blocks 704

Table of Contents

xxvii

2D Elements 704
Mixed Element Output 704
Adding Materials to a Block 705

266. ___ N
odeset and Sideset Specification ___ 707

Creating Nodesets and Sidesets 707
Useful hint: 708

Assigning Names and Descriptions to Nodesets and Sidesets 708
Grouping Faces on a Surface into a Sideset 708

Grouping elements in voids and enclosures 709
Deleting Nodesets and Sidesets 709
Displaying Nodesets and Sidesets 709
Nodeset Associativity Data 710
Equation-Controlled Distribution Factors 710
Nodesets/Sidesets/Blocks Behavior with Geometric Entity Copy 712

267. ___ N
odeset and Sideset Specification ___ 713

Creating Nodesets and Sidesets 713
Useful hint: 714

Assigning Names and Descriptions to Nodesets and Sidesets 714
Grouping Faces on a Surface into a Sideset 714

Grouping elements in voids and enclosures 715
Deleting Nodesets and Sidesets 715
Displaying Nodesets and Sidesets 715
Nodeset Associativity Data 716
Equation-Controlled Distribution Factors 716
Nodesets/Sidesets/Blocks Behavior with Geometric Entity Copy 718

268. ___ E
xodus II File Specification ___ 719

Exodus II Manual 719
Element Block Definition Examples 719

Multiple Element Blocks 719
Surface Mesh Only 719
Two-dimensional Mesh 719

269. ___ E
xodus II Model Title___ 721

270. ___ E
xodus Coordinate Frames ___ 723

271. ___ D
efining Materials and Media Types __ 725

272. ___ B
oundary Condition Sets ___ 727

*** ABAQUS Parameters *** 727
*** NASTRAN Parameters *** 727

Cubit 13.2 User Documentation

xxviii

273. ___ U
sing Restraints __ 729

Displacements/Accelerations/Velocities 729
Fixed or Free 730
Displacement Combinations 730

Temperature 730
Top, Gradient, Middle, Bottom 731

274. ___ U
sing Loads __ 733

Forces 733
Using Pressure 733

Value 733
Pressure and Total Force 734
Top and Bottom 734

Using Heat Flux 734
Top and Bottom Values 734

Using Convection 734
Surrounding 734
Coefficient 734

275. ___ U
sing Contact Surfaces __ 735

The Contact Region 735
The Contact Pair 735
Auto-Contact Tool 735

276. ___ U
sing Contact Surfaces __ 737

The Contact Region 737
The Contact Pair 737
Auto-Contact Tool 737

277. ___ U
sing CFD Boundary Conditions __ 739

Inlet Velocity 739
Inlet Pressure 739
Inlet Massflow 739
Outlet Pressure 739
Farfield Pressure 739
Symmetry 739

278. ___ M
iscellaneous Boundary Condition Commands __ 741

Delete 741
List 741
Draw 741
Highlight 741

Table of Contents

xxix

279. ___ E
xporting Sierra Files __ 743

280. ___ D
efining PARAMS for NASTRAN ___ 745

281. ___ F
inite Element Model __ 747

282. ___ E
xporting an Exodus II File ___ 749

Controlling Element and Node ID Maps 749
Exporting a Parallel Mesh for pCAMAL 749
Converting an Exodus II file to ASCII 749
Controlling Exodus II Output Precision 750
Large Exodus Format 750

283. ___ I
nstancing Parts with ABAQUS ___ 751

284. ___ E
xporting Fluent Grid Files ___ 753

285. ___ T
ransforming Mesh Coordinates ___ 755

286. ___ H
ow to Use the ITEM Wizard __ 757

The ITEM Workflow 757
Using an ITEM Panel 758

Task panels that link to other ITEM panels 758
Task Panels that Link to Control Panels 758
Set-up Panels 759
Diagnostic Panels 760

Undo Button 762
Magic Mesh Button 762
Getting Help 762

287. ___ D
efining the Geometric Model ___ 763

288. ___ S
etting up the Finite Element Model __ 765

289. ___ B
ad geometry representation ___ 767

Detecting Invalid Geometry 767
Resolving Invalid Geometry 767

290. ___ S
mall details in the model __ 769

Small Curves 769
Small and Narrow Surfaces 770

Cubit 13.2 User Documentation

xxx

291. ___ C
ontact Surfaces __ 773

292. ___ R
esolving Problems with Conformal Assemblies ___ 775

Resolving Misaligned Volumes with Manage Gaps/Overlaps Tool 775
Resolving Misaligned Volumes with Near Coincident Vertex Checks 776
Correcting Merge Problems 777

293. ___ D
etermining an Appropriate Merge Tolerance __ 779

Opening the Merge Tolerance Panel 779
Estimating Merge Tolerance with Small Feature Size 780
Fine Tuning the Merge Tolerance 781
Setting the Merge Tolerance 781

294. ___ D
etermining the Small Feature Size __ 783

Why doesn’t the list include small gaps between volumes? 783

295. ___ B
lend Surfaces ___ 785

296. ___ G
eometry Decomposition ___ 787

297. ___ R
ecognizing Nearly Sweepable Regions __ 789

298. ___ F
orced Sweepability ___ 791

299. ___ G
enerating a Mesh in ITEM __ 793

ITEM Meshing Suggestions 793

300. ___ V
alidating the Mesh in ITEM ___ 797

301. ___ A
utomatic Detail Suppression ___ 799

Example 799

302. ___ A
utomatic Geometry Decomposition ___ 801

303. ___ C
ohesive Elements __ 803

Multiple Curves in FLATQUAD Blocks 803

Table of Contents

xxxi

304. ___ D
eleting Mesh Elements __ 807

305. ___ F
eatureSize __ 809

306. ___ G
eometry Tolerant Meshing ___ 811

Initial Mesh Size 811
Fixing a Geometric Entity 811
Tolerance Fraction 812
Creating the tolerant mesh 812
Fem/New/Old Options 812
Free Mesh vs. Mesh-Based Geometry 812
Quadrilateral Surface Mesh 813
Examples 813
Limitations 815

Accumulated geometric error 815
Loss of Resolution due to initial faceting 816
Surface to Surface proximity 817
Mesh size on fixed geometry entities 818

307. ___ M
esh Cutting ___ 819
Coordinate Plane 819
Planar Surface 819
Plane from 3 points 819
Extended Surface 819

Meshcut Options 820
Meshcutting Scope 820
Meshcutting Example 820

308. ___ M
esh Grafting ___ 827

Grafting Options 827
Grafting Scope 827

Cubit 13.2 User Documentation

xxxii

309. ___ O
ptimize Jacobian ___ 831

310. ___ R
andomize ___ 833

311. ___ R
efine Mesh Boundary ___ 835

312. ___ S
culpting __ 837

313. ___ S
uper Sizing Function ___ 839

314. ___ T
est Sizing Function ___ 841

315. ___ T
ransition __ 843

316. ___ T
riangle Mesh Coarsening __ 847

317. ___ W
hisker Weave __ 849

Whisker Weaving Basic Commands 850
Whisker Weaving Options 850

318. ___ A
vailable Colors __ 851

319. ___ E
lement Numbering ___ 855

Node Numbering 855
Side Numbering 855
Triangular Shell Element Numbering 855

Node Ordering 856
Side Set Side Ordering 856

320. ___ F
ullHex vs. NodeHex Representation ___ 859

321. ___ A
PREPRO Syntax ___ 861

322. ___ A
PREPRO Rules __ 863

1. Functions 863
2. Variables 863
3. Numbers 863
4. Strings 863
5. Operators 863

Table of Contents

xxxiii

6. Delimiters 863
7. Expressions 863
8. Algebraic Expressions 863
9. String Expressions 864
10. Relational Expressions 864
11. Conditional Expressions 864

323. ___ A
PREPRO Operators __ 865

1. Arithmetic Operators 865
2. Assignment Operators 866
3. Relational Operators 866
4. Boolean Operators 867
5. String Operators 867

324. ___ A
PREPRO Predefined Variables ___ 869

325. ___ A
PREPRO Units ___ 871

326. ___ A
PREPRO Functions __ 875

1. Mathematical Functions 875
2. CUBIT Functions 877
3.String Functions 881

327. ___ A
PREPRO Additional Functionality ___ 885

1. File Inclusion 885
2. Conditionals 885
3. Loops 885

328. ___ A
PREPRO Journaling __ 887

APREPRO Comments 887
Significant Figures 887

329. ___ C
ubitInterface __ 889

Class Member Functions 889
Class Variables 901
Member Function Documentation 901

init(argv) 901
destroy() 902
set_cubit_interrupt(interrupt) 902
set_playback_paused_on_error(pause) 902
Bool is_playback_paused_on_error() 902
Bool developer_commands_are_enabled() 902
str get_version() 902
str get_revision_date() 903
str get_build_number() 903
str get_acis_version() 903
int get_acis_version_as_int() 903
str get_exodus_version() 903

Cubit 13.2 User Documentation

xxxiv

str get_graphics_version() 903
print_cmd_options() 904
Bool is_modified() 904
set_modified() 904
Bool is_undo_save_needed() 904
set_undo_saved() 904
Bool is_command_echoed() 904
Bool is_volume_meshable(volume_id) 904
journal_commands(state) 905
Bool is_command_journaled() 905
str get_current_journal_file() 905
cmd(input_string) 905
silent_cmd(input_string) 905
[int] parse_cubit_list(type, int_list, include_sheet_bodies) 906
print_raw_help(input_line, order_dependent, consecutive_dependent) 906
int get_error_count() 906
[str] get_mesh_error_solutions(error_code) 906
float get_view_distance() 907
[float] get_view_at() 907
[float] get_view_from() 907
reset_camera() 907
unselect_entity(entity_type, entity_id) 907
Bool is_perspective_on() 908
Bool is_occlusion_on() 908
Bool is_scale_visibility_on() 908
Bool is_select_partial_on() 908
int get_rendering_mode() 908
set_rendering_mode(mode) 908
clear_preview() 909
str get_pick_type() 909
float get_mesh_edge_length(edge_id) 909
float get_meshed_volume_or_area(geom_type, entity_ids) 909
int get_mesh_intervals(geom_type, entity_id) 909
float get_mesh_size(geom_type, entity_id) 910
float get_auto_size(volume_id_list, size) 910
float get_quality_value(mesh_type, mesh_id, metric_name) 911
str get_mesh_scheme(geom_type, entity_id) 911
str get_mesh_scheme_firmness(geom_type, entity_id) 912
str get_mesh_interval_firmness(geom_type, entity_id) 912
Bool is_meshed(geom_type, entity_id) 912
Bool is_merged(geom_type, entity_id) 913
str get_smooth_scheme(geom_type, entity_id) 913
int get_hex_count() 914
int get_pyramid_count() 914
int get_tet_count() 914
int get_quad_count() 914
int get_tri_count() 914
int get_edge_count() 914
int get_node_count() 915
int get_volume_element_count(volume_id) 915
Bool volume_contains_tets(volume_id) 915
int get_surface_element_count(surface_id) 915
[int] get_hex_sheet(node_id_1, node_id_2) 915
Bool is_visible(geom_type, entity_id) 916
ERROR: EOF in multi-line statement 916
Bool is_virtual(geom_type, entity_id) 916
ERROR: EOF in multi-line statement 916
Bool contains_virtual(geom_type, entity_id) 917

Table of Contents

xxxv

ERROR: EOF in multi-line statement 917
[int] get_source_surfaces(volume_id) 917
[int] get_target_surfaces(volume_id) 917
int get_common_curve_id(surface_1_id, surface_2_id) 918
int get_common_vertex_id(curve_1_id, curve_2_id) 918
str get_merge_setting(geom_type, entity_id) 918
str get_curve_type(curve_id) 919
str get_surface_type(surface_id) 919
[float] get_surface_normal(surface_id) 919
[float] get_surface_centroid(surface_id) 919
str get_surface_sense(surface_id) 919
[str] get_entity_modeler_engine(geom_type, entity_id) 920
[float] get_bounding_box(geom_type, entity_id) 920
[float] get_total_bounding_box(geom_type, entity_list) 921
float get_total_volume(volume_list) 921
str get_entity_name(geom_type, entity_id) 921
int get_entity_color_index(entity_type, entity_id) 922
Bool is_multi_volume(body_id) 922
Bool is_sheet_body(volume_id) 922
Bool is_interval_count_odd(surface_id) 923
Bool is_periodic(geom_type, entity_id) 923
Bool is_surface_planer(surface_id) 923
Bool get_undo_enabled() 924
int number_undo_commands() 924
[str] get_aprepro_vars() 924
str get_aprepro_value_as_string(var_name) 924
Bool get_node_constraint() 924
str get_vertex_type(surface_id, vertex_id) 924
[int] get_relatives(source_geom_type, source_id, target_geom_type) 925
[int] get_adjacent_surfaces(geom_type, entity_id) 925
[int] get_adjacent_volumes(geom_type, entity_id) 926
[int] get_entities(geom_type, include_sheet_bodies) 926
[int] get_list_of_free_ref_entities(geom_type) 926
int get_owning_body(geom_type, entity_id) 927
int get_owning_volume(geom_type, entity_id) 927
int get_owning_volume_by_name(entity_name) 928
float get_curve_length(curve_id) 928
float get_arc_length(curve_id) 928
float get_distance_from_curve_start(x, y, z, curve_id) 929
float get_curve_radius(curve_id) 929
[float] get_curve_center(curve_id) 929
float get_surface_area(surface_id) 929
float get_volume_area(volume_id) 930
float get_hydraulic_radius_surface_area(surface_id) 930
float get_hydraulic_radius_volume_area(volume_id) 930
[float] get_center_point(entity_type, entity_id) 930
int get_valence(vertex_id) 931
float get_distance_between(vertex_id_1, vertex_id_2) 931
print_surface_summary_stats() 931
print_volume_summary_stats() 931
int get_volume_count() 931
int get_surface_count() 932
int get_vertex_count() 932
int get_curve_count() 932
int get_curve_count(target_volume_ids) 932
Bool is_catia_engine_available() 932
[int] evaluate_exterior_angle(curve_list, test_angle) 932
[int] get_small_curves(target_volume_ids, mesh_size) 933

Cubit 13.2 User Documentation

xxxvi

[int] get_smallest_curves(target_volume_ids, num_to_return) 933
[int] get_small_surfaces(target_volume_ids, mesh_size) 933
[int] get_narrow_surfaces(target_volume_ids, mesh_size) 934
[int] get_small_and_narrow_surfaces(target_ids, small_area, small_curve_size) 934
[int] get_surfs_with_narrow_regions(target_ids, narrow_size) 934
[int] get_small_volumes(target_volume_ids, mesh_size) 934
[int] get_blend_surfaces(target_volume_ids) 935
[int] get_small_loops(target_volume_ids, mesh_size) 935
[int] get_tangential_intersections(target_volume_ids, upper_bound, lower_bound) 935
[int] get_coincident_vertices(target_volume_ids, high_tolerance) 935
[[str]] get_solutions_for_near_coincident_vertices(vertex_id1, vertex_id2) 936
[[str]] get_solutions_for_imprint_merge(surface_id1, surface_id2) 936
[[str]] get_solutions_for_small_surfaces(surface_id, small_curve_size, mesh_size) 936
[[str]] get_solutions_for_small_curves(curve_id, small_curve_size, mesh_size) 937
[[str]] get_solutions_for_surfaces_with_narrow_regions(surface_id, small_curve_size, mesh_size) 937
[int] get_overlapping_volumes(target_volume_ids) 937
[[int]] get_mergeable_vertices(target_volume_ids) 938
[[str]] get_solutions_for_blends(surface_id) 938
[[int]] get_blend_chains(surface_id) 938
float get_merge_tolerance() 938
str get_exodus_entity_name(entity_type, entity_id) 938
str get_exodus_entity_description(entity_type, entity_id) 939
[float] get_all_exodus_times(filename) 939
int get_block_id(entity_type, entity_id) 940
[int] get_block_ids(mesh_geom_file_name) 940
[int] get_block_id_list() 940
[int] get_nodeset_id_list() 940
[int] get_sideset_id_list() 941
[int] get_bc_id_list(bc_type_in) 941
str get_bc_name(bc_type_in, bc_id) 941
[int] get_nodeset_id_list_for_bc(bc_type_in, bc_id) 941
[int] get_sideset_id_list_for_bc(bc_type_in, bc_id) 941
int get_next_sideset_id() 942
int get_next_nodeset_id() 942
int get_next_block_id() 942
[int] get_block_volumes(block_id) 942
[int] get_block_surfaces(block_id) 942
[int] get_block_curves(block_id) 943
[int] get_block_vertices(block_id) 943
[int] get_block_nodes(block_id) 943
[int] get_block_edges(block_id) 943
[int] get_block_tris(block_id) 944
[int] get_block_faces(block_id) 944
[int] get_block_pyramids(block_id) 944
[int] get_block_tets(block_id) 944
[int] get_block_hexes(block_id) 945
[int] get_volume_hexes(volume_id) 945
[int] get_volume_tets(volume_id) 945
[int] get_nodeset_volumes(nodeset_id) 945
[int] get_nodeset_surfaces(nodeset_id) 945
[int] get_nodeset_curves(nodeset_id) 946
[int] get_nodeset_vertices(nodeset_id) 946
[int] get_nodeset_nodes(nodeset_id) 946
[int] get_nodeset_nodes_inclusive(nodeset_id) 946
[int] get_sideset_curves(sideset_id) 947
[int] get_curve_edges(curve_id) 947
[int] get_sideset_surfaces(sideset_id) 947
[int] get_sideset_quads(sideset_id) 947

Table of Contents

xxxvii

[int] get_surface_quads(surface_id) 948
[int] get_surface_tris(surface_id) 948
str get_entity_sense(source_type, source_id, sideset_id) 948
str get_wrt_entity(source_type, source_id, sideset_id) 949
Bool is_using_shells(sideset_id) 949
[str] get_geometric_owner(mesh_entity_type, mesh_entity_list) 949
[int] get_volume_nodes(vol_id) 950
[int] get_surface_nodes(surf_id) 950
[int] get_curve_nodes(curv_id) 950
int get_vertex_node(vert_id) 950
int get_id_from_name(name) 951
[int] get_group_groups(group_id) 951
[int] get_group_volumes(group_id) 951
[int] get_group_surfaces(group_id) 951
[int] get_group_curves(group_id) 951
[int] get_group_vertices(group_id) 952
[int] get_group_nodes(group_id) 952
[int] get_group_edges(group_id) 952
[int] get_group_quads(group_id) 952
[int] get_group_tris(group_id) 952
[int] get_group_tets(group_id) 952
[int] get_group_hexes(group_id) 953
int get_next_group_id() 953
delete_all_groups() 953
delete_group(group_id) 953
set_max_group_id(max_group_id) 953
int create_new_group() 953
remove_entity_from_group(group_id, entity_id, entity_type) 953
add_entity_to_group(group_id, entity_id, entity_type) 954
[int] get_mesh_group_parent_ids(element_type, element_id) 954
Bool is_mesh_element_in_group(element_type, element_id) 955
Bool is_part_of_list(target_id, id_list) 955
int get_last_id(entity_type) 955
str get_assembly_classification_level() 956
str get_assembly_classification_category() 956
str get_assembly_weapons_category() 956
str get_assembly_metadata(volume_id, data_type) 956
Bool is_assembly_metadata_attached(volume_id) 956
str get_assembly_name(assembly_id) 957
str get_assembly_path(assembly_id) 957
str get_assembly_description(assembly_id) 957
int get_assembly_instance(assembly_id) 957
str get_assembly_file_format(assembly_id) 958
str get_assembly_units(assembly_id) 958
str get_assembly_material_description(assembly_id) 958
str get_assembly_material_specification(assembly_id) 958
int get_exodus_id(entity_type, entity_id) 959
str get_geometry_owner(entity_type, entity_id) 959
[int] get_connectivity(entity_type, entity_id) 959
[int] get_expanded_connectivity(entity_type, entity_id) 960
[int] get_sub_elements(entity_type, entity_id, dimension) 960
[float] get_nodal_coordinates(node_id) 961
[int] get_hex_nodes(hex_id) 961
[int] get_tet_nodes(tet_id) 961
[int] get_face_nodes(face_id) 961
[int] get_tri_nodes(tri_id) 962
Bool get_node_position_fixed(node_id) 962
str get_sideset_element_type(sideset_id) 962

Cubit 13.2 User Documentation

xxxviii

str get_block_element_type(block_id) 962
int get_exodus_element_count(entity_id, entity_type) 963
int get_block_attribute_count(block_id) 963
float get_block_attribute_value(block_id, index) 963
[str] get_valid_block_element_types(block_id) 963
int get_nodeset_node_count(nodeset_id) 964
int get_geometry_node_count(entity_type, entity_id) 964
str get_mesh_element_type(entity_type, entity_id) 964
Bool is_on_thin_shell(bc_type_in, entity_id) 965
Bool temperature_is_on_solid(bc_type_in, entity_id) 965
Bool convection_is_on_solid(entity_id) 965
Bool convection_is_on_shell_area(entity_id, shell_area) 965
float get_convection_coefficient(entity_id, cc_type) 965
float get_bc_temperature(bc_type, entity_id, temp_type) 966
Bool temperature_is_on_shell_area(bc_type, bc_area, entity_id) 966
Bool heatflux_is_on_shell_area(bc_area, entity_id) 966
float get_heatflux_on_area(bc_area, entity_id) 966
int get_cfd_type(entity_id) 966
float get_contact_pair_friction_value(entity_id) 967
float get_contact_pair_tolerance_value(entity_id) 967
Bool get_contact_pair_tied_state(entity_id) 967
Bool get_contact_pair_general_state(entity_id) 967
Bool get_contact_pair_exterior_state(entity_id) 967
int get_displacement_coord_system(entity_id) 968
str get_displacement_combine_type(entity_id) 968
float get_pressure_value(entity_id) 968
str get_pressure_function(entity_id) 968
float get_force_magnitude(entity_id) 968
float get_moment_magnitude(entity_id) 968
[float] get_force_direction_vector(entity_id) 969
[float] get_force_moment_vector(entity_id) 969
str get_constraint_type(constraint_id) 969
str get_constraint_reference_point(constraint_id) 969
str get_constraint_dependent_entity_point(constraint_id) 969
float get_material_property(mp, entity_id) 970
int get_media_property(entity_id) 970
[str] get_material_name_list() 970
[str] get_media_name_list() 970
set_label_type(entity_type, label_flag) 970
int get_label_type(entity_type) 970
Body body(id_in) 970
Volume volume(id_in) 971
Surface surface(id_in) 971
Curve curve(id_in) 971
Vertex vertex(id_in) 971
reset() 971
Body brick(width, depth, height) 972
Body sphere(radius, x_cut, y_cut, z_cut, inner_radius) 972
Body prism(height, sides, major, minor) 972
Body pyramid(height, sides, major, minor, top) 973
Body cylinder(hi, r1, r2, r3) 973
Body torus(r1, r2) 973
Vertex create_vertex(x, y, z) 974
Curve create_curve(v0, v1) 974
Body create_surface(curves) 974
[Body] sweep_curve(curves, along_curves, draft_angle, draft_type, rigid) 974
Body copy_body(init_body) 975
[Body] tweak_surface_offset(surfaces, distances) 975

Table of Contents

xxxix

[Body] tweak_surface_remove(surfaces, extend_ajoining, keep_old, preview) 975
[Body] tweak_curve_remove(curves, keep_old, preview) 976
[Body] tweak_curve_offset(curves, distances, keep_old, preview) 976
[Body] tweak_vertex_fillet(verts, r0, keep_old, preview) 976
[Body] subtract(tool_in, from_in, imprint_in, keep_old_in) 977
[Body] unite(body_in, keep_old_in) 977
move(entity, vector, preview) 977
scale(entity, factor, preview) 977
reflect(entity, axis, preview) 978
[int] get_volumes_for_node(node_name, node_instance) 978
int get_mesh_error_count() 978

330. ___ P
yObservable __ 979

Inheritance 979
Class Member Functions 979
Member Function Documentation 980

notify_observers(event_type) 980

331. ___ P
yObserver __ 981

Class Member Functions 981
Member Function Documentation 981

register_observable(observable) 981
unregister_observable(observable) 981
notify_observers(observable, event_type) 981

332. ___ E
ntity ___ 983

Inheritance 983
Class Member Functions 983
Member Function Documentation 983

destroy_cubit_entity() 983
[float] bounding_box() 983
[float] center_point() 984
int id() 984
is_visible(visibility_flag) 984
int is_visible() 985
is_transparent(transparency_flag) 985
int is_transparent() 985

333. ___ G
eomEntity __ 987

Inheritance 987
Class Member Functions 987
Member Function Documentation 987

mesh() 987
Bool is_meshed() 988
smooth() 988
remove_mesh() 988
str entity_name() 989
entity_name(name) 989
[str] entity_names() 989
int num_names() 990
remove_entity_name(name) 990
remove_entity_names() 990

Cubit 13.2 User Documentation

xl

int dimension() 990
[Body] bodies() 991
[Volume] volumes() 991
[Surface] surfaces() 991
[Curve] curves() 992
[Vertex] vertices() 992

334. ___ B
ody __ 993

Inheritance 993
Class Member Functions 993
Member Function Documentation 993

[float] get_mass_props() 993
int point_containment(loc_in) 993
float volume() 994
Bool is_sheet_body() 994

335. ___ S
urface __ 995

Inheritance 995
Class Member Functions 995
Member Function Documentation 995

color(value) 995
int color() 996
[[Curve]] ordered_loops() 996
[float] normal_at(location) 996
[float] closest_point_trimmed(location) 997
[float] closest_point_trimmed(location) 997
int point_containment(point_in) 998
[float] principal_curvatures(point) 998
[float] position_from_u_v(u, v) 998
[float] u_v_from_position(location) 999
[float] get_param_range_U() 999
[float] get_param_range_V() 999
float area() 1000
Bool is_planar() 1000
Bool is_cylindrical() 1000

336. ___ C
urve __ 1003

Inheritance 1003
Class Member Functions 1003
Member Function Documentation 1004

color(value) 1004
int color() 1004
[float] tangent(point) 1004
[float] curvature(point) 1005
[float] closest_point(point) 1005
[float] closest_point_trimmed(point) 1005
float length() 1006
[float] curve_center() 1006
[float] position_from_fraction(fraction_along_curve) 1007
float start_param() 1007
float end_param() 1007
float u_from_position(position) 1008
[float] position_from_u(u_value) 1008

Table of Contents

xli

float u_from_arc_length(root_param, arc_length) 1008
float fraction_from_arc_length(root_vertex, length) 1009
[float] point_from_arc_length(root_param, arc_length) 1009
float length_from_u(parameter1, parameter2) 1010
Bool is_periodic() 1010

337. ___ V
ertex __ 1011

Inheritance 1011
Class Member Functions 1011
Member Function Documentation 1011

color(value) 1011
int color() 1011
[float] coordinates() 1012

338. ___ V
olume ___ 1013

Inheritance 1013
Class Member Functions 1013
Member Function Documentation 1013

float volume() 1013
color(value) 1013
int color() 1014
[float] principal_axes() 1014
[float] principal_moments() 1014
[float] centroid() 1015

339. ___ C
ubitFailureException __ 1017

Class Member Functions 1017
Member Function Documentation 1017

str what() 1017

340. ___ I
nvalidEntityException ___ 1019

Class Member Functions 1019
Member Function Documentation 1019

str what() 1019

341. ___ I
nvalidInputException __ 1021

Class Member Functions 1021
Member Function Documentation 1021

str what() 1021

342. ___ F
ASTQ ___ 1023

343. ___ P
eriodic Space Filling Models (Tile) ___ 1027

Initial setup 1027
Creating Nodesets 1027
Smoothing 1027
Example 1028

Cubit 13.2 User Documentation

xlii

344. ___ T
roubleshooting Guide ___ 1029

345. ___ R
eferences __ 1031

346. ___ C
redits ___ 1035

347. ___ I
ndex __ 1037

1

Introduction | Environment | Geometry | Meshing | FE Model | ITEM | Tutorials | Appendix

CUBIT 13.2 User Documentation

Introduction - A quick overview of some of the main features and goals of the CUBIT
Mesh Generation Toolkit, licensing and distribution, installation, hardware requirements, and where to go

for help.

Environment Control - A description of the CUBIT user environment, including using
the graphical user interface, session control, command line syntax, journal files,
graphics, entity picking, saving and restoring etc..

Geometry - A description of CUBIT's geometry features including building
geometry from scratch, manipulating geometry in CUBIT, importing and exporting
geometry formats, etc...

Mesh Generation - A description of CUBIT's mesh generation capabilities, including
how to mesh geometry, meshing and smoothing schemes, setting sizes and intervals,
importing a mesh, etc...

Finite Element Model - How to set up the finite element model for analysis, including
defining boundary conditions, material properties, exporting the finite element model, etc.

Immersive Topology Environment for Meshing (ITEM) - A description of Cubit's interactive
meshing wizard including how to use the wizard, and a guide to geometry clean-up, setting

up the finite element model, mesh generation in ITEM, etc.

Step-By-Step Tutorials

Appendix

Credits

Quick Reference

Official CUBIT Web Page

http://cubit.sandia.gov/

Cubit 13.2 User Documentation

2

3

Key Features

Geometry Creation, Modification, and Healing

CUBIT usually relies on the ACIS solid modeling kernel for geometry representation; there is also mesh-based geometry.
Other solid model kernels are planned. Geometry is imported or created within CUBIT. Geometry is created bottom-up or
through primitives. CUBIT can also read STEP, IGES, and FASTQ files and convert them to the ACIS kernel. SolidWorks,
AutoCAD, and some other commercial CAD systems can write SAT files directly.

Once in CUBIT, an ACIS model is modified through booleans, or tweaking curves and surfaces. Without changing the
geometric definition of the model, the topology of the model may be changed using virtual geometry. For example, virtual
geometry can be used to composite two surfaces together, erasing the curve dividing them.

Sometimes, an ACIS model is poorly defined. This often happens with translated models. The model can be healed inside
CUBIT.

Non-Manifold Topology

Typical assembly meshes require contiguous mesh across multiple parts in an assembly. CUBIT accomplishes this by
taking the two touching surfaces of neighboring volumes, and merging them into a single surface. There will be only one
mesh of the surface, and both volume meshes will share that surface mesh. (In contrast, some meshing packages keep
two surfaces, and take steps to ensure their mesh connectivity and positions match.)

These shared surfaces are called non-manifold topology. Geometric models are usually imported into CUBIT as manifold
(non-shared) models; then, surfaces which pass a geometric and topological comparison are "merged". A similar
technique is used to merge model edges and vertices across parts. These comparisons are performed automatically, and
can optionally be restricted to subsets of the model (to allow representations of such features as slide lines).

Geometry Decomposition

Solid models often require decomposition to make them amenable to hexahedral meshing. CUBIT contains a wide variety
of tools for interactive geometry decomposition, and a capability for performing automatic geometry decomposition is also
under development.

Mesh Generation

CUBIT contains a variety of tools for generating meshes in one, two and three dimensions. While the primary focus of
CUBIT is on generating unstructured quadrilateral and hexahedral meshes, algorithms are also available for structured
mesh generation and triangle/tetrahedral mesh generation. Several algorithms for generating mixed hex-tet meshes are
also being developed.

Boundary Conditions

CUBIT uses different boundary conditions for EXODUS-II format and Non-Exodus formats such as ABAQUS, for
importing and exporting mesh data. EXODUS represents boundary conditions on meshes using Element Blocks,
Nodesets, and Sidesets. Element Blocks are used to group elements by material type. Nodesets are used to group nodes.
Other analysis programs can apply nodal boundary conditions to these sets, such as enforced displacement or nodal
temperature values. Sidesets are used to group sides of elements, such as faces of hexes or edges of quads. Other
analysis programs can apply face-based and edge-based boundary conditions to these sets, for example pressure or heat
flux.

Using Element Blocks, Nodesets and Sidesets, a mesh and boundary conditions can be specified in an analysis-
independent manner. Typically this specification is combined with an additional data file which designates the specific
type of boundary condition (temperature, displacement, pressure, etc.), along with boundary condition values.

Non-Exodus export formats such as Abaqus support more specific boundary condition sets. These sets may include
displacements, temperatures, forces, heatflux, pressure, or contact pairs.

Cubit 13.2 User Documentation

4

Element Types

CUBIT supports a wide variety of element types, including 1d, 2d, and 3d elements of various orders. Each block has a
unique element type. The element type is specified after the block is created, and after mesh generation (recommended).
Higher order nodes are generated when the element type is specified. Higher order nodes are projected to curved
geometry, depending on the user-settable node constraint flag.

Graphics Display Capabilities

CUBIT uses the VTK package for its graphics and rendering engine. CUBIT can display geometric and mesh entities in
several modes, including hidden line, shaded, transparent or wireframe modes. CUBIT supports screen picking of
geometric and mesh entities, as well as mouse-controlled view transformations like rotate, pan, and zoom. VTK takes
advantage of hardware acceleration on most supported platforms. Image files of any displayed image can also be
generated. CUBIT can also be run without graphics, to allow execution in batch mode or over slow network connections.

Graphical User Interface

A full graphical user interface (GUI) with the standard look and feel consistent with major platforms is available on all
supported Cubit platforms. The GUI version can improve productivity, making new users aware of the wide range of
CUBIT capabilities, and freeing new and experienced users from having to remember esoteric syntax. The GUI and non-
GUI versions create and play back identical journal files, making it easier to switch from one environment to the other.

Command Line Interface

In the command line interface, commands are specified by text rather than mouse clicks. Commands can be entered
interactively or in batch mode by playing back a journal file. The command line interface is available in the GUI through a
window. The non-GUI version supports graphical picking and echoing to the command line, and also mouse-driven view
transformations, but no menus and dialog boxes. The command line and GUI dialog boxes support the APREPRO
preprocessor, which allows parameterization of input. The non-GUI version is available on all platforms, including
Windows.

5

Hardware Requirements

Cubit is available on the following platforms:

 Linux glibc 2.5+ 32 and 64 bit (e.g. Redhat 5, Fedora 6, SUSE 10.2, Debian 5, Ubuntu 7.04)

 Windows 2000/XP/Vista/7, 32 and 64 bit

 Mac 10.5+, Intel 32 Bit

The Graphical User Interface version is available on all platforms.

For best results, local displays supporting OpenGL 1.5 is recommended.

7

Licensing, Distribution and Installation

The CUBIT code is available for use by personnel inside Sandia, any other government laboratory, or to personnel
performing work under contract by a US government entity. In addition, CUBIT can be licensed for non-commercial and
research use. For more information on licensing of CUBIT, see the CUBIT web page
(http://malla.sandia.gov/cubit/index.html) or send email to cubit-dev@sandia.gov.

CUBIT installations have use restrictions. THE CUBIT CODE CANNOT BE COPIED TO ANOTHER COMPUTER AND
THE NUMBER OF USER SEATS ON EACH COMPUTER OR LAN IS LIMITED. If additional user seats or additional
copies of CUBIT are required, you MUST contact us to acquire them.

CUBIT incorporates code modules developed by outside code vendors and licensed to the CUBIT project. Since the
number of licenses for these modules is limited, CUBIT cannot be copied and redistributed without notifying the CUBIT
team.

CUBIT is distributed in statically linked executable form for each supported platform. Supported platforms are listed under
Hardware Requirements. Additional platforms will be added as required.

Instructions for obtaining the CUBIT code will be given after licensing arrangements have been completed.

In addition to the CUBIT executable, the suite of example problems described in this manual is available upon request.

http://malla.sandia.gov/cubit/index.html
mailto:cubit-dev@sandia.gov

9

Trademark Notice

ACIS is a proprietary format developed by Spatial Technologies.

Granite is a proprietary format developed by Parametric Technology Corporation

All other trademarks are the property of their respective owners.

http://www.spatial.com/

11

How to Use This Manual

This manual provides specific information about the commands and features of CUBIT. It is divided into chapters, which
roughly follow the process in which a finite element model is created, from geometry creation to mesh generation to
boundary condition application. Examples are provided in the tutorial chapter. Appendices contain advanced topics, alpha
commands, summary of APREPRO functions, FASTQ reference, a troubleshooting guide, and references.

Integrated in CUBIT are algorithms and tools, which are in a user-beware state. As they
are further tested (often with the assistance of users) and improved, the tool becomes
more stable and production-worthy. Since documentation of the tool is necessary for
actual use, we have included the documentation of all available tools. However, a
"hammer" icon is placed next to some capabilities as a warning.

Certain portions of this manual contain information that is vital for understanding and
effectively using CUBIT. These portions are highlighted with a "key" icon.

13

Introduction

 Key Features

 Hardware Requirements

 Licensing, Distribution, and Installation

 Trademark Notice

 How to Use this Manual

 Cubit Mailing Lists

 Problem Reports and Enhancement Requests

Welcome to CUBIT, the Sandia National Laboratory automated mesh generation toolkit. CUBIT is a full-featured software
toolkit for robust generation of two- and three-dimensional finite element meshes (grids) and geometry preparation. Its
main goal is to reduce the time to generate meshes, particularly large hex meshes of complicated, interlocking
assemblies. It is a solid-modeler based preprocessor that meshes volumes and surfaces for finite element analysis. Mesh
generation algorithms include quadrilateral and triangular paving, 2D and 3D mapping, hex sweeping and multi-sweeping,
tetrahedral meshing, and various special purpose primitives. CUBIT contains many algorithms for controlling and
automating much of the meshing process, such as automatic scheme selection, interval matching, sweep grouping, and
also includes state-of-the-art smoothing algorithms

The CUBIT environment is designed to provide the user with a powerful toolkit of meshing algorithms that require varying
degrees of input to produce a complete finite element model. Many CUBIT users want to experiment with capabilities as
soon as possible. Hence, CUBIT releases often contain algorithms which are not quite ready for production use. These
features are listed in the Appendix, and are accessible to the user by specifying a developer flag.

The overall goal of the CUBIT project is to reduce the time it takes a person to generate an analysis model. Generating
meshes for complex, solid model-based geometries requires a variety of tools. Many CUBIT tools are completely
automatic, while others require user input. Usually, the automatic choices can be over-ridden by the user if necessary.
Most meshing capabilities are integrated into the common CUBIT framework; there are also stand-alone tools like Verde.
The user is encouraged to become familiar with all of the available tools, so that he can choose the right one for the job.

15

CUBIT Mailing Lists

The CUBIT team maintains a couple of mailing lists to help our users.

1) The cubit-announce mailing list is a very low-volume mailing list intended to provide news of new releases and other
items of major importance. To subscribe to this list, send a message to: majordomo@sandia.gov
with the body of the message being:

subscribe cubit-announce

2) The cubit users mailing list is a medium-volume mailing list intended for our users to communicate with each other and
ask help of the user community. It also contains the same announcements as the cubit-announce mailing list. To send
questions or comments to this list, send email to:

cubit@sandia.gov

Users can subscribe to the cubit mailing list by emailing majordomo@scico.sandia.gov with a message body consisting of
the single line:

subscribe cubit

An additional mailing list, cubit-help@sandia.gov, has been created for direct communication with the CUBIT developers.
These messages won't reach other users. This list should be used for topics that are not of general interest to others,
including some bugs.

Note: The recommended use of an electronic mailing list to report bugs and request
enhancements is not intended to discourage face-to-face discussion with CUBIT developers,
but rather to minimize response time. Users are encouraged to discuss bugs, enhancements
or general meshing issues with the CUBIT production meshing and development teams.

mailto:majordomo@sandia.gov
mailto:cubit@sandia.gov
mailto:majordomo@scico.sandia.gov
mailto:cubit-help@sandia.gov

17

Problem Reports and Enhancement Requests

CUBIT bugs, problem reports and enhancement requests should be sent to cubit-help@sandia.gov or cubit-
dev@sandia.gov. The CUBIT production meshing team or development team will review the email quickly. Users should
expect some type of response within two days. Bugs are usually entered by a developer into CUBIT's bug tracking
system.

mailto:cubit@sandia.gov
mailto:cubit-dev@sandia.gov
mailto:cubit-dev@sandia.gov

19

Starting and Exiting a CUBIT Session

The following commands are used to control CUBIT execution.

Starting the Session

The command line version of CUBIT can be started on UNIX machines by typing "cubit" at the command prompt from
within the CUBIT directory. If you have not yet installed CUBIT, instructions for doing so can be found in Licensing,
Distribution and Installation. A CUBIT console window will appear which tells the user which CUBIT version is being run
and the most recent revision date. A graphics window will also appear unless you are running with the -nographics
option. For a complete list of startup options see the Execution Command Syntax section of this document. CUBIT can
also be run with initialization files or in batch mode.

Windows File Association

Windows users have the option to associate .cub, .sat, and .jou files with CUBIT. This means that double-clicking on one
of these files will open it automatically in CUBIT. This option is available during the installation process

Exiting the Session

The CUBIT session can be discontinued with either of the following commands

Exit

Quit

Resetting the Session

A reset of CUBIT will clear the CUBIT database of the current geometry and mesh model, allowing the user to begin a
new session without exiting CUBIT. This is accomplished with the command

Reset [Genesis | Blocks | Nodesets | Sidesets]

A subset of portions of the CUBIT database to be reset can be designated using the qualifiers listed. Advanced options
controlled with the Set command are not reset.

You can also reset the number of errors in the current Cubit session, using the command

Reset Errors <value>

which will set the error count to the specified value, or zero if the value is left blank.

Abort Handling

In the event of a crash, Cubit will attempt to save the current mesh as "crashbackup.cub" in the current working directory
just before it exits.

To disable saving of the crashbackup.cub file set an environment variable CUBIT_NO_CRASHSAVE equal to true. Or,
use the following command:

Set Crash Save [On|Off]

This command will turn on or off crashbackup.cub creation during a crash on a per-instance basis. To minimize the effects
of unexpected aborts, use Cubit's automatic journaling feature, and remember to save your model often.

21

Execution Command Syntax

Execution command syntax options for the command line version of CUBIT are:

cubit
 -help (Print this summary)
 -Include <$val> (Specify a journal file)
 -input $val (Playback commands in file $val)
 -solidmodel <$val> (Read .sat or .cub from file $val)
 -fastq <$val> (Read FASTQ file $val)
 -initfile <$val> (Read $val as initialization file instead
 of $HOME/.cubit)
 -batch (Batch Mode - No Interactive Command Input)
 -nographics (Do not display graphics windows)
 -noinitfile (Do not read .cubit file)
 -noecho (Do not echo commands to console)
 -nojournal (Do not write journal file)
 -nodeletions (Do not allow file deletions)
 -journalfile <$val> (Name of journal file, will be overwritten)
 -restore [$val] (Name of restore file (default = cubit_geom.save.sat))
 -maxjournal [$val] (Maximum number of journal files to write)
 -warning [$val] (Warning Messages On/Off)
 -information [$val] (Informational Messages On/Off)
 -debug <$val> (Set specified flags on, e.g. 1,3,7-9
 enables 1,3,7,8,9))
 -display <$val> (Specify display to be used for
 graphics window)
 -driver <$val> (Specify the type of driver to be used for
 graphics display)
 -nooverwritecheck (Do not perform file export overwrite check)
 -variable=<value> (Assign an aprepro variable a value)

Each of these are optional. If specified, the quantities in square brackets, [$val], are optional and the quantities in angle
brackets, <$val>, are required.

Options are summarized in more detail below:

-help Print a short usage summary of the command syntax to the
terminal and exit.

-initfile <$val> Use the file specified by <$val> as the initialization file
instead of the default set of initialization files. See
Initialization Files

-noinitfile Do not read any initialization file. This overrides the default
behavior described in Initialization Files

-solidmodel <$val> Read the ACIS solid model geometry or .cub file information
from the file specified by <$val> prior to prompting for
interactive input.

-batch Specify that there will be no interactive input in this
execution of CUBIT. CUBIT will terminate after reading the
initialization file, the geometry file, and the input_file_list.

-nographics Run CUBIT without graphics. This is generally used with the
-batch option or when running CUBIT over a line terminal.

-display Sets the location where the CUBIT graphics system will be
displayed, analogous to the -display environment variable

Cubit 13.2 User Documentation

22

for the X Windows system. Unix only.

-driver <type> Sets the <type> of graphics display driver to be used.
Available drivers depend on platform, hardware, and system
installation. Typical drivers include X11 and OpenGL.

-nojournal Do not create a journal file for this execution of CUBIT. This
option performs the same function as the Journal Off
command. The default behavior is to create a new journal
file for every execution of CUBIT.

-journalfile <file> Write the journal entries to <file>. The file will be overwritten
if it already exists.

-maxjournal <$val> Only create a maximum of <$val> default journal files.
Default journal files are of the form cubit#.jou where # is a
number in the range 01 to 999.

-nodeletions Turn off the ability to delete files with the delete file
'<filename>' command.

-nooverwritecheck Turn off the file overwrite check flag. Files that are written
may then overwrite (erase) old files with the same name
with no warning. This is typically useful when re-running
journal files, in order to overwrite existing output files. See
the set File Overwrite Check [ON|off] command.

-restore Restore the specified filename (or "cubit_geom") mesh and
ACIS files, e.g. cubit_geom.save.g and
cubit_geom.save.sat.

-noecho Do not echo commands to the console. This option performs
the same function as the Echo Off command. The default
behavior is to echo commands to the console.

-debug=<$val> Set to "on" the debug message flags indicated by <$val>,
where <$val> is a comma-separated list of integers or
ranges of integers, e.g. 1,3,8-10.

-information={on|off} Turn {on|off} the printing of information messages from
CUBIT to the console.

-warning={on|off} Turn {on|off} the printing of warning messages from CUBIT
to the console.

-Include=<path> Allows the user to specify a journal file from the command
line.

-fastq=<file> Read the mesh and geometry definition data in the FASTQ
file <file> and interpret the data as FASTQ commands. See
T. D. Blacker, FASTQ Users Manual Version 1.2, SAND88-
1326, Sandia National Laboratories, (1988). for a
description of the FASTQ file format.

<input_file_list> Input files to be read and executed by CUBIT. Files are
processed in the order listed, and afterwards interactive
command input can be entered (unless the -batch option is
used.)

Execution Command Syntax

23

<variable=value> APREPRO variable-value pairs to be used in the CUBIT
session. Values can be either doubles or character type
(character values must be surrounded by double quotes.),
Command options can also be specified using the
CUBIT_OPT environment variable. (See Environment
Variables .)

25

Initialization Files

CUBIT can execute commands on startup, before interactive command input, through initialization files. This is useful if
the user frequently uses the same settings.

On Unix or Windows, the following files are played back in order, if they exist, at startup:

<$CUBIT_DIR/.cubit.install
$HOMEDRIVE$HOMEPATH/.cubit
$HOME/.cubit
$(current working directory)/.cubit

Where $(current working directory) is determined by the program itself and words starting with '$' are environment
variables.

If the -initfile <filename> option is used on the command that starts cubit, then the other init files are skipped and only
the specified filename is played back.

The $CUBIT_DIR file is installation specific. The $HOME file is user specific. The $PWD file is run-specific, read when
starting up cubit from a particular meshing problem's subdirectory.

These files are typically used to perform initialization commands that do not change from one execution to the next, such
as turning off journal file output, specifying default mouse buttons, setting geometric and mesh entity colors, and setting
the size of the graphics window.

27

Environment Variables

CUBIT can interpret the following environment variables. These settings are only applicable to the Command Line Version
of CUBIT and do not apply to the Graphical User Interface. See also the CUBIT_STEP_PATH and CUBIT_IGES_PATH
environment variables. See also the CUBIT_DIR, HOMEDRIVE and HOMEPATH settings.

DISPLAY The graphics window or GUI will pop-up on the specified X-Window display. This
is useful for running CUBIT across a network, or on a machine with more than
one monitor. Unix only.

CUBIT_OPT Execution command line parameter options. Any option that is valid from the
command line may be used in this environment variable. See Execution
Command Syntax.

CUBIT_Journal Specifies path and name to use for journal file. The specified path may contain
the following %-escape sequences:

%a - abbreviated weekday name
%A - full weekday name
%b - abbreviated month name
%B - full month name
%d - date of the month [01,31]
%H - hour (24-hour clock) [00,23]
%I - hour (12-hour clock) [01,12]
%j - day of the year [1,366]
%m - month number [1,12]
%M - minute [00,59]
%n - replaced with the next available number between 01 and 999.
%p - "a.m." or "p.m."
%S - seconds [00,61]
%u - weekday [1,7], 1 is Monday
%U - week of year [00,53]
%w - weekday [0,6], 0 is Sunday
%y - year without century [00,99]
%Y - year with century (e.g. 1999)
%% - a '%' character

The default value is "cubit%n.jou". This creates journal files in the current
directory named "cubit00.jou", "cubit01.jou", "cubit02.jou", etc. To keep the same
naming scheme but create the files the /tmp directory, set CUBIT_JOURNAL to
"/tmp/cubit%n.jou"

To create journal files in directories according to the day of the week, first create
directories named "Mon", "Tues", etc. CUBIT will not create them for you. Next
set CUBIT_JOURNAL to
"%a/%n.jou". This will create journal files named "01.jou" through "999.jou" in the
appropriate directory for the current day of the week.

Cubit 13.2 User Documentation

28

29

Command Syntax

The execution of CUBIT is controlled either by entering commands from the command line or by reading them in from a
journal file. Throughout this document, each function or process will have a description of the corresponding CUBIT
command; in this section, general conventions for command syntax will be described. The user can obtain a quick guide
to proper command format by issuing the <keyword> help command; see Command Line Help for details.

CUBIT commands are described in this manual and in the help output using the following conventions. An example of a
typical CUBIT command is:

Volume <range> Scheme Sweep [Source [Surface] <range>] [Target [Surface] <range>] [Rotate {on |
OFF}]

The commands recognized by CUBIT are free-format and abide by the following syntax conventions.

1. Case is not significant.
2. The "#" character in any command line begins a comment. The "#" and any characters following it on the same

line are ignored. Although note that the "#" character can also be used to start an Aprepro statement. See the
Aprepro documentation for more information.

3. Commands may be abbreviated as long as enough characters are used to distinguish it from other commands.
4. The meaning and type of command parameters depend on the keyword. Some parameters used in CUBIT

commands are:

Numeric: A numeric parameter may be a real number or an integer. A real number may be in any legal C or
FORTRAN numeric format (for example, 1, 0.2, -1e-2). An integer parameter may be in any legal decimal
integer format (for example, 1, 100, 1000, but not 1.5, 1.0, 0x1F).

String: A string parameter is a literal character string contained within single or double quotes. For example,
'This is a string' .

Filename: When a command requires a filename, the filename must be enclosed in single or double quotes. If
no path is specified, the file is understood to be in the current working directory. After entering a portion of a
filename, typing a '?' will complete the filename, or as much of the filename as possible if there is more than one
possible match.

A filename parameter must specify a legal filename on the system on which CUBIT is running. The filename
may be specified using either a relative path (../cubit/mesh.jou), a fully-qualified path
(/home/jdoe/cubit/mesh.jou), or no path; in the latter case, the file must be in the working directory (See
Environment Commands for details.) Environment variables and aliases may also be used in the filename
specification; for example, the C-Shell shorthand of referring to a file relative to the user's login directory
(~jdoe/cubit/mesh.jou) is valid.

Toggle: Some commands require a "toggle" keyword to enable or disable a setting or option. Valid toggle
keywords are "on", "yes", and "true" to enable the option; and "off", "no", and "false" to disable the option.

5. Each command typically has either:

* an action keyword or "verb" followed by a variable number of parameters. For example:

Mesh Volume 1

Here Mesh is the verb and Volume 1 is the parameter.

* or a selector keyword or "noun" followed by a name and value of an attribute of the entity indicated. For
example:

Volume 1 Scheme Sweep Source 1 Target 2

Here Volume 1 is the noun, Scheme is the attribute, and the remaining data are parameters to the Scheme
keyword.

The notation conventions used in the command descriptions in this document are:

Cubit 13.2 User Documentation

30

 The command will be shown in a format that looks like this:

 A word enclosed in angle brackets (<parameter>) signifies a user-specified parameter. The value can be an
integer, a range of integers, a real number, a string, or a string denoting a filename or toggle. The valid value
types should be evident from the command or the command description.

 A series of words delimited by a vertical bar (choice1 | choice2 | choice3) signifies a choice between the
parameters listed.

 A toggle parameter listed in ALL CAPS signifies the default setting.

 A word that is not enclosed in any brackets, or is enclosed in curly brackets ({required}) signifies required
input.

 A word enclosed in square brackets ([optional]) signifies optional input which can be entered to modify the
default behavior of the command.

 A curly bracket that is inside a square bracket (e.g. [Rotate {on|OFF}]) is only required if that optional modifier
is used.

31

Command Line Help

In addition to the documentation you are currently viewing, CUBIT can give help on command syntax from the command
line. For help on a particular command or keyword, the user can simply type help <keyword> . In addition, if the user has
typed part of a command and is uncertain of the syntax of the remainder of the command, they can type a question mark
? and help will be printed for the sequence of keywords currently entered. It is important to note that if the user has typed
the keywords out of order, then no help will be found. If the user is not sure of the correct order of the keywords, the
ampersand & key will search on all occurrences of whatever keywords are entered, regardless of the order. The results of
this type of command are shown in the following listing.

CUBIT> volume 3 label ?
Completing commands starting with: volume, label.
Help not found for the specified word order.

CUBIT> volume 3 label &
Help for words: volume & label
Label Volume [on | off | name [only|id] | id | interval | size | scheme | merge | firmness]

CUBIT> label volume 3 ?
Completing commands starting with: label, volume.
Label Volume [on|off|name [only|ids]|ids|interval|size|scheme|merge|firmness]

33

Environment Commands

 Working Directory

 File Manipulation

 CPU Time

 Comment

 History

 Error Logging

 Determining the CUBIT Version

 Echoing Commands

 Digits Displayed

Working Directory

The working directory is the current directory where journal files are saved. To list the current directory type

pwd

The current path will be echoed to the screen. By default, the current directory is the directory from which CUBIT was
launched. The command to change the current directory is

cd "<new_path>"

The new path may be an absolute reference, or relative to the current directory. The <TAB> key will complete unique file
references.

File Manipulation

A helpful addition is the ability to do a directory listing of a directory. The command for this is

ls ['<file_name>']

or

dir ['<file_name>']

Note also that you can delete files from the command line. The command for this is

Delete File ['<file_name>']

The file name may include the wildcard character *, but not the wildcard character ?, since the ? is used for command
completion. File deletion from the command line can also be disabled. If deletions are set to off files cannot be deleted
from the cubit command line.

Set Deletions [ON|Off]

The mkdir command is used to create a new directory. The syntax for this command is:

Mkdir "<directory_name>"

This creates a new directory with the specified name and path. The command accepts an absolute path, a relative path,
or no path. If a relative path is specified, it is relative to the current working directory, which can be seen by typing 'pwd' at
the cubit command prompt. If no path is specified, the new directory is created in the current working directory.

The command succeeds if the specified directory was successfully created, or if the specified directory already exists. The
command fails if the new directory's immediate parent directory does not exist or is not a directory.

Cubit 13.2 User Documentation

34

CPU Time

At times it is important to see how much cpu time is being used by a command. One function available to do this is the
timer command. The syntax for this command is:

Timer [Start|Stop]

The start option will start a CPU timer that will continue until the stop command is issued. The elapsed time will be printed
out on the command line. If no arguments are given, the command will act like a toggle.

Comment

This keyword allows you to add comments without affecting the behavior of CUBIT.

Comment ['<text_to_print>'] [<aprepro_var>] [<numeric_value>]

The comment command can take multiple arguments. If an argument is an unquoted word, it is treated as an aprepro
variable and its value is printed out. Quoted strings are printed verbatim, and numbers are printed as they would be in a
journal string. For example:

CUBIT> #{x=5}
CUBIT> #{s="my string"}
CUBIT> comment "x is" x "and s is" s

User Comment: x is 5 and s is my string

Journaled Command: comment "x is" x "and s is" s

History

This command allows you to display a listing of your previous commands.

History <number_of_lines>

For example, if you type history 10, the most recent 10 commands will be echoed to the input window.

Error Logging

[set] Logging Errors {Off | On File '<filename>'[Resume]}

This setting will allow users to echo error messages to a separate log file. The resume option will allow output to be
appended to existing files instead of overwriting them. For more information on CUBIT environment settings see List Cubit
Environment.

Determining the CUBIT Version

To determine information on version numbers, enter the command Version. This command reports the CUBIT version
number, the date and time the executable was compiled, and the version numbers of the ACIS solid modeler and the VTK
library linked into the executable. This information is useful when discussing available capabilities or software problems
with CUBIT developers.

Echoing Commands

By default, commands entered by the user will be echoed to the terminal. The echo of commands is controlled with the
command:

[Set] Echo {On | Off}

Digits Displayed

CUBIT uses all available precision internally, but by default will only print out a certain number of digits in order for
columns to line up nicely. The user can override that with the "set digits" command:

Environment Commands

35

Set Digits [<num_to_list=-1>]

If the digits are set to -1, then the default number of digits for pretty formatting are used. If the digits are set to a specific
number, such as 15, more digits of accuracy can be displayed. This may be useful when checking the exact position and
size of geometric features.

The number of digits used for listing positions, vectors and lengths can be listed using the following command:

List Digits

Examples:

CUBIT> set digits 6

Coordinates and lengths will be listed with up to 6 digits.

CUBIT> set digits 20

For this platform, max digits = 15. Coordinates and lengths will be listed with up to 15 digits.

CUBIT> set digits -1

To reset digits to default, use 'set digits -1'

The number of coordinate and length digits listed will vary depending on the context.

37

Saving and Restoring a Cubit Session

There are currently two ways to save/restore a model in CUBIT. A file can be saved with either the Exodus or CUBIT File
method. The method of choice is determined by a set command. The CUBIT method is the default.

Set Save [exodus|CUBIT] [Backups <number>]

CUBIT File Method

 New

 Open

 Save

 Import

 Export

The CUBIT file is a binary cross-platform compatible file for the storage of a Cubit model that is compact in size and
efficient to access. It includes both the geometry and the associated mesh, groups, blocks, sidesets, and nodesets. Mesh
and geometry are restored from the Cubit file in exactly the same state as when saved. For example, element faces and
edges are persistent, as well as mesh and geometry ids. The Graphical User Interface version of CUBIT also provides a
toolbar with direct access to file operations using the CUBIT File method described here.

New

Creates a new blank model with default name, closing the current model. The New command
essentially acts like the reset command.

Open '<filename>'

Opens an existing *.cub file, closing the current model.

Save

A default file name is assigned when CUBIT is started (in very much the same way the journal files
are assigned on startup) in the form cubit01.cub, for example. The current model filename is
displayed on the title bar of the CUBIT window. Typing save at any time during your session will save
the current model to the assigned *.cub file. The *.cub file includes the *.sat file and the mesh.
Groups, blocks, sidesets and nodesets are also saved within the *.cub file. To change the name of
the current model, or to save the model's current geometry to a different file, use the save as
command. Note that 'save <file.cub>' is NOT a valid command.

Save

Save As 'filename.cub' [Overwrite]

The set file overwrite command can be toggled on and off to allow overwriting when using the save as
command. The command is defaulted to not allow overwriting.

Set File Overwrite [On|OFF]

A backup file is created by default, allowing access to previous states of the model. The backup files
are named *.cub.1, *.cub.2... The user can set the total number of backups created per model with
the following command (the default number of backups is 99,999):

Set Save Backups <number>

As soon as the number of model backups reaches the maximum, the lowest numbered backup file
will be removed upon subsequent backup creation.

To check on the status of a 'set' command, type in the command in question without any options. For
example, to check which save method is currently toggled, type:

Cubit 13.2 User Documentation

38

Set Save

Import

Appends a *.cub file to an existing model.

Import Cubit 'filename.cub' [merge_globally]

Export

In addition to saving an entire model, one can use the export command to save only a portion of a
model. The geometry and associated mesh, groups, blocks, sidesets and nodesets are exported.
Only bodies or free surfaces, curves or vertices can be exported to a Cubit file.

Export Cubit 'filename.cub' entity-list

39

Interrupting Running Tasks

Many operations in the command line version of CUBIT can be interrupted using <Control>-C. Pressing <Control>-C will
attempt to interrupt the running process as soon as feasible, returning the user back to the command line. Not all
operations may be interrupted, and many can only be interrupted at certain stages. Any current tasks are canceled as
soon as it is feasible to do so, including playback of journal files. The playback of a journal file is always stopped, even if
the current running task cannot be interrupted. The journal file will stop at the next opportunity, when the current task is
completed. Interrupted journal files may be resumed at the next command. See the section titled Controlling Playback of
Journal Files for more information on controlling playback of journal files.

To interrupt processes in the Graphical User Interface, see the documentation for the GUI application window.

41

CUBIT Application Window

The default CUBIT Application Window is shown in the following image.

Figure 1. The CUBIT Application Window

Graphics Window- The current model will be displayed here. Graphical picking and view transformations are done here.

Power Tools - Geometry tree hierarchy view, geometry analysis and repair tool, meshing tool, meshing quality tool, and
ITEM Wizard.

Property Editor - The Property Editor lists attributes of the current entity selection. Some of these properties can be
edited from the window.

Command Panel - Most Cubit commands are available through the command panels. The panels are arranged
topologically, by mode.

Command Line Workspace - The command line workspace contains both the cubit command and error windows. The
command window is used to enter cubit commands and view the output. The error window is used to view cubit errors.

Drop Down Menus - Standard file operations, Cubit setup and defaults, display modes, and other functionality is
available in the pull-down menus.

Toolbars - The most commonly used features are available by clicking toolbar icons.

Cubit 13.2 User Documentation

42

Context Sensitive Help in the GUI

The Graphical User Interface has a context-sensitive help system. To obtain help using a specific window or control panel,
press F1 when the focus is in the desired window. It may be necessary to click inside a text box to switch focus to a
particular window. If no context specific help is available, it will open the cubit help documentation where you can search
for a particular topic.

Customizing the Application Window

All windows in the CUBIT Application can be Floated or Docked. In the default configuration, all windows are docked.
When a window is docked the user can click on the area indicated below.

Figure 2. A docked window. Click and drag to float.

By dragging with the left mouse button held down, the window will be un-docked from the Application Window. Dragging
the window to another location on the Application Window and releasing the mouse button will cause it to dock again in a
new location. The bounding box of the window will automatically change to fit the dimensions of the window as it is
dragged. Releasing the mouse button while the window is not near an edge will cause the window to Float. To stop the
window from automatically docking, hold the CONTROL key down while dragging.

CUBIT Application Window

43

Figure 3. A Floating Window

When a window is floating, as shown in Figure 3, it is possible to dock it by clicking the title bar of the window and
dragging it to its new docked location.

Note: Double clicking on the title bar of an floating window will cause the window to redock in its last docked position.

Cubit 13.2 User Documentation

44

Interrupting Running Tasks

Many commands can be interrupted in the middle of execution. The GUI has a cancel button that can be used to interrupt
the current command. The cancel button will turn red when a command can be interrupted. The cancel button has an 'x'
on it, and is located on the status bar, which is at the bottom of the application.

45

Command Panel Functionality

The Command Panel is arranged first by mode on the top row of buttons. Modes are arranged by task. All of the geometry
related tasks, for instance, can be found under the Geometry mode. When a mode is selected, a second row of buttons
becomes available. The second row of buttons shown depends on the selected mode. For example, if Geometry,
Meshing, or Materials and BCs is selected, the second button row will show entity types. Entities are those specific to the
mode.

 Geometry panel entity level buttons include Volumes, Surfaces, Curves, Vertices, and Groups.

 Meshing panel entity level buttons include Volumes, Surfaces, Curves, Vertices, Groups, Hexes, Tets, Quads,
Tris, Bars, and Nodes.

 Materials and BCs entity level buttons include Exodus Nodesets, Exodus Sidesets, Exodus Blocks, Create
Boundary Conditions, Modify Boundary Conditions, List Boundary Conditions, Draw Boundary Conditions, Make
a Boundary Condition current, and Delete Boundary Conditions.

The second row of buttons for Analysis Setup and Post Processing are not arranged by entity. Rather, the buttons show
specific capabilities.

The third row of buttons contains Actions, such as Create, Delete, Modify, and so forth. The following shows an example
of Geometry/Volume actions.

Selecting an Action will display a command panel. The Geometry/Volume/Create command panel is shown below.

Cubit 13.2 User Documentation

46

All command panels are constructed similarly. Each abstracts a set of Cubit commands. Options are selected using
checkboxes, radio buttons, combo boxes, edit fields, and other standard GUI widgets. Each command panel includes an
Apply button. Pressing the Apply button will generate a command to Cubit. Nothing happens until and unless the Apply
button is pressed.

Note: The edit fields are free form, which means the user may enter any valid string into the
fields. Any string that is valid for the command line is valid for the command panel edit fields.

Where possible, default values are placed into edit fields. At any time, with the cursor placed over a blank portion of the
command panel, the user may right-click to select Reset Data which will clear all fields and replace default values.

ID Input Entry Methods

The ID Input Fields provide a location where Geometric IDs, required for the current command, can be entered. IDs can
be entered in several ways:

Simple Keyboard entry

ID numbers can be entered directly in the field. Each ID must be separated with a space. Select the field first before
typing.

Graphical selection

IDs can be entered automatically by selecting entities directly in the Graphics Window. The current entity available for
selection is based on the current entity selection mode. In some cases, not all entities of the current entity selection mode
will be available for picking. The program may automatically filter the applicable entities based on the context of the
current command

Geometry Tree selection

IDs may be entered by selecting the corresponding geometric entity from the geometry tree. To select multiple entities use
the <ctrl> key.

Command Panel Functionality

47

Ranges

A range of IDs may be typed into the field. For example:

1 to 5

will automatically enter all IDs from 1 to 5 inclusive in the field. Keywords such as all and except can also be used. Any
range that can be entered directly on a CUBIT command line can also be used in the ID input field. See Command Line
Entity Specification for a description of the syntax.

As Part of Other Entities

Syntax can be entered in the ID Input field that will specify an entity based upon its topological relationship to other
entities For example, if a Vertex Selection Type Button was highlighted, entering

in surf 1

will automatically enter all vertices in surface 1 into the Input Field. CUBIT has a rich set of syntax rules for specifying
entities based upon topology relationships. See Command Line Entity Specification for a description.

In Groups

Entities that are part of groups may be specified in the ID Input Field. For example, if the Vertex Selection Type Button is
highlighted, entering:

in picked

will automatically enter all vertices in the picked group into the active ID Input Field.

Dragged and Dropped

Entities can be dragged and dropped into the ID Input Field from the Tree View window.

Right-Click Context Menu for ID Input Fields

When the right mouse button is selected while in an ID Input Field, the following menu options will appear:

 Done Selecting - Enters current selection and removes cursor from selection window

 Select Other - Displays selection dialog

 Select All - Selects all available entities and puts "select all" in input window

 Highlight - Highlight the current selection

 Zoom To - Zooms to current entity in the selection field within the graphics window

 Rotate About - Change center of rotation to the center of selected entity

 Draw - Draws the entities listed in the input field within the graphics window

 Isolate - Turns visibility off for all entities other than the selected entities. Similar to draw command, but
entities remain hidden with a graphics refresh. Select All Visible in the graphics window to turn visibility back
on.

 Visibility Off - Removes the current entity from the input window and hides it on the graphics screen

 Mesh - Mesh the listed entities using either an assigned scheme or a default scheme where none is assigned

 Delete Mesh - Deletes mesh on all entities listed in the input window

 Reset Entity - rehighlights the entities listed in the input field within the graphics window

 List Info - Displays a sub menu of choices including basic, geometry, and mesh. Selecting the basic option will
list schemes, visibility, and interval assignments. The geometry option will add information about the geometry
and geometry engine. The mesh option will list information about mesh entities.

 Delete - Deletes the current geometric object in the input window.

Value Fields

Integer and real values pertinent to the command are entered in this window. Input placed in parenthesis { } will be
evaluated when the command is executed. For example:

{10*0.02}

Cubit 13.2 User Documentation

48

is valid input. Additionally, any APREPRO syntax is valid in the Value Field, including mathematical functions and boolean
operations. See the section, APREPRO for a description of syntax.

Advancing Pickwidgets

Some command panels have several id input fields such as the Mesh>Hex>Create panel. A convenience feature
implemented for such panels is an advancing pickwidget feature. Pressing the middle mouse button after selecting an
entity will advance to the next id input field.

49

View Navigation in the GUI

There are two different default paradigms for view navigation: Cubit command line and Cubit GUI. The user is allowed to
customize the mouse settings as desired. Mouse settings in the GUI are modified by accessing the Tools pull-down
menu, then select Options. The Mouse Settings dialog is shown below (See Mouse-Based Navigation for the command
line version).

Figure 1. Mouse Settings Dialog

Rotations

Where the cursor is in the graphics window will dictate how the view will be rotated. If the cursor is outside of an imaginary
circle, shown in Figure 2, the view will be rotated in 2d, around an axis normal to the screen. If it is inside the circle, as in
Figure 3, the rotations will be in 3d, about the current view spin center. The spin center can be changed to any x-y-z
location. The most common way is by zooming to an entity, which changes the spin center to the centroid of that entity.
The "view at" command will change the spin center without zooming:

View at vertex 3

Cubit 13.2 User Documentation

50

Figure 2. With the mouse pointer outside the circle the view is rotated about an axis normal to the screen

Figure 3. With the mouse pointer inside the circle the view is rotated about the current spin center

Zooming

To zoom, press the appropriate buttons or keys and move the cursor vertically, as shown in Figure 4. The wheel on a
wheel mouse will also zoom.

View Navigation in the GUI

51

Figure 4. Move the mouse pointer vertically to zoom in and out

Panning

To pan, press the appropriate buttons or keys and move the cursor horizontally or vertically, as shown in Figure 5.

Figure 5. Move the mouse pointer horizontally or vertically to pan the view

53

Selecting Entities in the GUI

Geometry, mesh entities, and boundary conditions can be selected with the left mouse button directly in the graphics
window. Before selecting any entity, however, the correct selection mode must be chosen. This dictates which entity types
will be available for selection in the graphics window. The Select Toolbars, which are located above the graphics window
by default, are used to change the entity selection modes.

Figure 1. The Selection Toolbar for Geometry and Mesh Entities

Figure 2. The Selection Toolbar for Boundary Conditions

Figures 1 and 2 shows the selection toolbars. Selecting one of the entity selection modes will only permit selection of that
particular entity type within the graphics window. These selections will not override a Pick Widget in the command panel.

If both volume and surface entities are picked on the select toolbar, a single click will select the surface while a double
click will select the volume. More detailed information on selecting and specifying entities can be found in Entity Selection
and Filtering .

Pre-Selection

When the mouse cursor is over an entity type that has been selected from the Pick toolbar, that entity will become
highlighted. This is called pre-selection and is used as a graphical guide to show which entity will be picked when the
mouse button is clicked.

Graphics pre-selection may slow down your graphics speed for large models. You can disable pre-selection from the
Tools->Options dialog box.

Cubit 13.2 User Documentation

54

Polygon and Box Select

The polygon/box selection feature allows you to select entities by drawing a box or polygon on the screen. To draw box on
the screen press and hold the <CTRL> button* while clicking and dragging the left mouse button. Release the left mouse
to complete the box select. To create a polygon selection, press and hold the <CTRL>* button while clicking and dragging
the left mouse button. Click the left mouse button to create another side for the polygon. Press either of the other buttons
to close the polygon and complete the selection. Only entities that are in active selection mode will be selected. To
change between the polygon or box method, press the Toggle Between Polygon/Box Select button on the Select Toolbar.
Clicking the Toggle Selected Enclosed/Extended button will toggle between Enclosed Selection and Extended Selection.
Enclosed selection will only select entities that are fully enclosed within the bounding box or polygon. Extended selection
will select entities that are either fully OR partially enclosed within the bounding box. Toggling the the Select X-Ray will
select entities that are hidden behind other entities. X-ray selection will only apply to smoothshade and hiddenline
graphics modes.

*Note: For Mac computers use the command (or apple) button for polygon or box select.

55

Key Press Commands for the GUI

Several commands have a key press shortcut. These commands will be executed with respect to the currently selected
entities; see the following table:

Shortcut Key Command

l List information about the current entity to the output window.

i Toggle the visibility of the selected entity (make invisible or visible).

e Echo entity id to command line.

Select the next entity.

Select the previous entity.

0 Toggle picking of vertices.

1 Toggle picking of curves.

2 Toggle picking of surfaces.

3 Toggle picking of volumes.

4 Toggle picking of groups.

 0 Toggle picking of mesh nodes

 1 Toggle picking of mesh edges.

 2 Toggle picking of mesh faces.

3 Toggle picking of mesh hexes.

F5 Refresh graphics window

S Activate/inactivate graphics clipping plane

57

Right Click Commands for the GUI Graphics
Window

Clicking the Right mouse button in the graphics window will bring up a menu. One of two menus will appear, depending
on whether an entity is currently selected.

With Entity Selected

 Select Other- Brings up a dialog with alternate entity selections

 Zoom To - Zoom to the selected entity

 Rotate About - Changes the center of rotation to the centroid of this entity

 Draw - Draw the selected entity

 Isolate - Turn all but the selected entities invisible

 Add to BC/Group/Part - Opens a dialog box where you can add the selected entity to an existing boundary
condition, group, or part.

 Remove from BC/Group/Part - Opens a dialog box where you can remove the selected entity from an existing
boundary condition, group, or part.

 Add to Picked Group - Add this entity to the picked group.

 Remove from Picked Group - Remove this entity from the picked group

 Visibility Off - Turn selected entities invisible

 Mesh - Mesh the selected entities

 Measure - Measures between two entities, or two vertices on a curve.

 Delete Mesh - Delete the mesh on selected entities (but not interval or scheme information)

 Reset Entity - Reset selected entities by deleting mesh and interval information

 List Info - Show the menu of additional list commands

 Delete - Delete selected entities

Without Entity Selected

 Reset Zoom - Reset zoom to original configuration

 Refresh- Refresh the graphics display

 All Visible - Make all entities visible

 Display Options - Opens Options Menu to display options

59

Repositioning Nodes in the GUI

CUBIT provides the capability to reposition mesh nodes interactively from the graphics window. To use this feature, first
open the "Move Node" command panel on the GUI and select either Move XYZ or Normal to Surface.

Moving Nodes by XYZ offsets

Figure 1. The Move Node XYZ command panel

Figure 1 shows the Move Node panel with the Move XYZ choice selected, which is located under the Mesh-Node panels.
The interactive node movement is only available from this window. When the nodes are selected, the neighboring mesh
elements are also highlighted. Nodes with gray handles can be moved by dragging the nodes in the window. The
Constrained to Geometry option will force the nodes to remain constrained to their parent geometry.

The Show Quality option will graphically display the quality based on a color-coded scale. A color bar will appear on the
screen that shows the various quality values by color.

Cubit 13.2 User Documentation

60

Figure 2. The Show Quality option

Nodes can be repositioned individually, or in groups, as shown in Figure 2. In this example, the Show Quality option is
selected, displaying the color scale next to the entity. See Mesh Quality Command Syntax for a description of how to
resize and reposition the color bar.

Moving Nodes Normal to Surfaces

Nodes can also be repositioned relative to surface normals. The command panel is shown below.

Repositioning Nodes in the GUI

61

Figure 1. The Move Node Normal to Surface command panel

63

Viewing Curve Valence

To view your model based on a color-coded curve valence scale, click on the curve valence button on the Display
Toolbar. Curve valence refers to the number of surfaces attached to each curve. Curves with exactly two surfaces
attached are shown in blue. Curves with exactly one surface are shown in red. Curves with more than two attached
surfaces are shown in white.

This tool is useful for quickly visualizing merged/unmerged topology. Merged curves will usually have a valence > 2, while
unmerged curves typically have a valence of 2. Curves with a valence of 1 may indicate a floating surface.

65

Geometry Tree

The geometry tree provides a complete graphical hierarchical representation of the parent child relationship of all
geometric entities. The tree is populated as the model is constructed by Cubit. In addition to showing a hierarchy of
geometric entities, the tree also shows Assembly Data, active Groups, and active Boundary Condition entities.

The tree works directly with the graphics window and picking. Selecting an entity in the tree will select the same entity in
the graphics window. Selecting an entity in the graphics window will highlight the tree entry if that entry is currently visible.
If an entity's visibility is turned off, the icon next to that entity in the geometry tree will disappear.

If the tree entry is not visible the user may press the Find button located at the bottom of the tree. The first occurrence of
the selected entity will be shown on the tree.

Virtual entities have a small (v) after the name to indicate that they are virtual entities.

Cubit 13.2 User Documentation

66

Figure 1. Geometry Tree Window

Geometry Tree

67

Drag and Drop

The Tree View window supports drag and drop of geometric entities into existing boundary condition sets. To create
boundary conditions, see the Materials and Properties menu on the main control panel, or right-click on one of the
boundary condition labels and select the "Create New" option from the context menu. Geometric entities or groups can be
added to blocks, nodesets, or sidesets by dragging and dropping inside the tree view window. Assembly data may also be
organized in the geometry tree window through drag and drop.

Picked Group

The current selections in the graphics window can be added to a "picked group" by selecting the "Add to Picked Group"
from the Right click menu. Selections can also be added to the picked group by dragging and dropping onto the group
from the geometry tree window. The picked group can be substituted into any commands that use groups. To remove an
item from the picked group, use the "Remove from Group" option in the right click menu in the geometry tree or from the
graphics window.

Figure 2. Picked Group

Right-Click Menu Functions

The geometry tree's context menu is sensitive to the type of item and the number of items selected. Functions that
apply to the item type and number of selected items are available from the context menu. These include the
following:

 Zoom To - Available for all geometric entities

 Rotate About - Change the center of rotation to the centroid of the entity without zooming

 Fly-In - Animated zoom feature

 Locate - Labels the selected entity in the graphics window

 Draw - Draw this entity by itself.

 Isolate - Similar to Draw command, but the display will not be refreshed with a graphics reset. To redisplay the
model, select All Visible from the graphics window right-click menu.

 Transparency On/Off - Toggles transparency mode

 Visibility On/Off - Toggles visibility

 Rename - Allows you to rename entities from the tree. Clicking on a highlighted entity in the tree will do the
same thing. This will also work for boundary condition entities (blocks, nodesets and sidesets)

 Mesh - Mesh selected entity at current settings.

 Delete Mesh - Available for meshed entities

 Reset Entity - Deletes mesh, and returns all settings to default values.

Cubit 13.2 User Documentation

68

 Delete - Available when Volumes and Groups are selected.

 Create New Assembly/Sub-assembly/Part - You must specify the absolute path to create a new assembly,
sub-assembly or part (e.g. /a1/p1). It may also be necessary to refresh the full tree before viewing changes.

 Add Selected to Part- Add the selected volume in the graphics window to the selected part on the geometry
tree.

 Remove from Metadata - Deletes the selected part or assembly metadata information. An assembly must be
empty to remove it

 View Metadata - List metadata in the command line workspace

 Rename Metadata - Allows you to rename a part or assembly

 Clean Metadata - Removes all parts and assemblies that are not associated with any geometric entities.

 List Volumes Without Parts - Lists all volumes that are not associated with a part in the output window

 Show Part Name/Description -Toggles the display of the part name/description in the tree.

 Goto Part - Finds the associated metadata part when a volume is selected.

 Measure - Available when two entities are selected or 1 curve is selected

 Refresh Full Tree - Used to return to main tree

 Collapse Tree - Available when entities are selected.

 View Descendants/Ancestors - Show this entity's individual hierarchy. Use the Refresh Full Tree option to
return to main tree view.

 View Neighbors View adjacent entities. Use the Refresh Full Tree option to return to the main tree view.

 Create New Volume - Available when the user right-clicks over the Volumes (parent) label. Opens the
geometry-volume-create panel

 Import Geometry - Available when the user right-clicks over the Volumes (parent) label. Opens import dialog.

 Create New Group - Available when the user right-clicks over the Groups (parent) label.

 Clean Out Group - Available when groups are selected. Removes all entities from group.

 Remove from Group - Available when groups are selected. Removes selected entity from the group.

 Add Selected to Block/Nodeset/Sideset - Add the selected entity in the graphics window to the chosen block,
nodeset, or sideset in the geometry tree.

 Delete Selected from Block/Nodeset/Sideset - Delete the selected entity in the graphics window from the
chosen block, nodeset, or sideset in the geometry tree.

 Create New Block/Sideset/Nodeset - Available when the user right-clicks over the respective Boundary
Conditions (parent) label.

 Create New <boundary condition> - Available when highlighting desired boundary condition in the tree
including CFD and FEA boundary conditions.

 Draw Block/Sideset/Nodeset - Draws the selected block/nodeset/sideset on top of existing entities

 Draw Sideset/Nodeset Only - Draws the selected nodeset/sideset independent of other entities

 Delete Selected Boundary Condition - Deletes any selected boundary conditions

 Draw Selected Boundary Condition - Draws selected boundary condition by itself

 Draw Selected Boundary Condition (Add) - Draws multiple boundary conditions

 List Selected Boundary Condition - Lists information about selected boundary conditions in the command line
window

 Remove from Block/Sideset/Nodeset - Removes selected entity from the specified block, sideset or nodeset

 Cleanup (Tets) - Issues cleanup command for selected block. Only applicable for blocks composed of tet
elements

 Remesh (Tets) - Issues remesh command for selected block. Only applicable for blocks composed of tet
elements

 List Info - List information about selected entity in the output window.

69

Geometry Power Tools

The geometry power tools are located on the Tree View window under the blue geometry tab. In many cases, a model will
fail to mesh because of problems with the geometry. Since the range of geometry problems is so wide, and because
these problems can be hard to diagnose, the Geometry Power Tool has several built-in tools designed to analyze and
repair these problems. The Geometry Repair Tool analyzes geometry for small angles, overlap, small features, bad
geometry definition, blend surfaces, close loops, or mergeable entities that may affect meshing capability. It also contains
a powerful toolkit of geometry modification methods to fix these problems. All of the common geometry clean-up tools are
now in one place on the GUI menu. In addition, there is a window that lists results from geometry analysis in a tree format,
making it easier to find, diagnose, and solve geometry problems. And Cubit will save your settings, so you can run the
same diagnostic tests each time you use the geometry power tools.

Figure 1. Geometry Power Tools

Geometry Analysis Tools

The geometry power tools contain an array of tests that can be run on geometry to diagnose potential problems for mesh
generation. To display a list of tests, click on the Show Options check box. By default all tests are selected and run on
geometry. Some tests may not apply to specific geometry, or may only need to be run once per geometry (i.e. bad
geometry definition test). Clicking on the box by each test will deselect it.

The geometry analysis inputs and tests are summarized below:

Cubit 13.2 User Documentation

70

Shortest Edge Length -The shortest edge length is a value that is input by the user. It determines the minimum allowable
threshold for small features. It is used as an input to test for small curves, small surfaces, small volumes and close loops.
The default value for this is 1. This value should be changed relative to the size of the model. In a very broad sense, it
represents a desired mesh edge length. Curves and surfaces which are smaller than this size, and which may be
troublesome to mesh with the desired granularity, will be flagged and they can be removed or modified.

Bad Angle Upper/Lower Bounds - The bad angle upper/lower bounds are tolerances set by the user to determine the
definition of small or large angles. The default values are set at 350 degrees for the large angle and 10 degrees for the
small angle. These values are used to test for angles between curves, surfaces, and at tangential intersections.

Bad Angle Check - The bad angle check will test for small angles between curves, surfaces, and at tangential
intersections. The test will only look for curves or surfaces that are adjacent.

Tangential Intersection - A tangential intersection is formed when two parallel surfaces share an
edge and have a 180 degree angle between them. The tangential intersection test is looking for the
condition where two surfaces that meet tangentially share a common edge, and each of the surfaces
has another edge which resides on a third face and forms a small angle as shown in the following
example. Surface 1 and Surface 2 are tangential to each other and share a common edge. Both
Surface 1 and 2 have another edge which resides on Surface 3 and forms a small angle at the vertex
common to all three surfaces.

Figure 2. Tangential Intersection

Mergeable Entities Check - As it suggests, this test is looking for entities that overlap and that can be merged. Pressing
the "Merge all" button on the Power Tools will automatically merge all entities flagged by the merge test.

Overlap Check - The overlap tests look for geometry that are either overlapping or coincident (exactly on top of each
other). Keep in mind that some of these problems may disappear with imprinting and merging.

Small Features Check - Small features may be necessary and desirable in a model, but many times they are the result of
poor geometry translation or import, or they may just not be important to the analysis. The small features tests look for
small curves, small surfaces, and small volumes. These tests rely on the user-defined short edge length parameter. Small
curves, including zero-length curves such as hardpoints, are compared directly against the defined parameter, and
flagged if they less than or equal to the given parameter. Small surfaces and volumes, on the other hand, are compared
against their hydraulic radius. For surfaces the hydraulic radius is 4*surface_area/perimeter. For volumes the hydraulic
radius is 6*volume/surface_area.

Geometry Power Tools

71

Bad Geometry Definition Check - Cubit uses third party libraries, such as ACIS from Spatial, Inc. for much of its
geometric modeling capabilities. The bad geometry definition check calls internal validation routines in these libraries,
when available, to check for errors in geometry definition. If the third party library does not provide validation capabilities,
this check will not return anything. Note: ACIS is a trademark of Spatial.

Blend Surface Check - A blend surface is a transition surface between two orthogonal planes, such as a fillet. The blend
surface check identifies the surfaces which meet this criterion. Many times these surfaces are candidates for the split
surface command or the remove surface command. The split surface command allows you to split these blend surfaces
into two surfaces, making it easier to mesh the volume. The remove surface command removes the surface and extends
the adjoining surfaces until they intersect.

Close Loops Check - Close loops (pronounced KLOS, not KLOZ) are two loops on a single surface for which the
shortest distance between loops is less than a user specified tolerance. The tolerance for close loops is the square of the
shortest edge length parameter. Close loops are common around holes and fillets, and are usually found where one loop
is entirely within the other loop. These surfaces are often candidates for removal, or tweaking.

Geometry Repair Tools

Note: Pressing most of the geometry tool buttons on the panel will only bring up applicable command panels on the
Control Panel. You must press the Apply button on the Control Panel to execute the command.

Split Surface Button

The split surface tool is used to split a surface into two surfaces. This is useful for blend surfaces, for example, where
splitting a surface may facilitate sweeping. To select a surface for splitting, click on the surface in the tree view. To select
multiple surfaces in the window, hold the CTRL key* while selecting surfaces (surfaces must be attached to each other).
Then press the split surface button to bring up the Control Panel window with the ids of selected surfaces in the text input
window. The split surface menu is located on the Control Panel under Geometry-Surface-Modify. You must press the
Apply button for the command to be executed. You can also bring up the Split Surface menu by selecting surfaces in the
tree view and selecting Split from the right click menu.

*Note: For Mac computers, use the command key (or apple key) to select multiple entities

Heal Button

The healing function in Cubit is used to improve ACIS geometry that has been corrupted during file import due to
differences in tolerances, or inherent limitations in the parent system. These errors may include: geometric errors in
entities, gaps between entities, and the absence of connectivity information (topology). To heal a volume, select the
volume in the geometry repair tree view. Then press the heal button. You may also press the heal button without a
geometry selected in the window, and enter it later. The Control Panel window will come up under the Geometry-Volume-
Modify option with the selected volume id highlighted. If no entity is selected, or if another entity type is selected, the input
window will be blank. You can also open the healing control panel by selecting Heal from the right click menu in the
geometry power tools window.

Tweak Button

The tweak command is used to eliminate gaps between entities or simplify geometry. The tweaking commands modify
geometry by offsetting, replacing, or removing surfaces, and extending attached surfaces to fill in the gaps. Tweaking can
be applied to surfaces, and it can be applied to curves with a valence no more than 2 at each vertex. It can also be
applied to some vertices. To tweak a surface, select the surface in the tree view. The Geometry-Surface-Modify control
panel will appear with the selected surface id in the input window.

Tweaking is available for curves. Tweaking a curve creates a blended or chamfered edge between two orthogonal
surfaces. The curve option is located on the Geometry-Curve-Modify panel under the Blend/Chamfer pull-down option.

Tweaking is also available for some vertices. Tweaking a vertex creates a chamfered or filleted corner between three
orthogonal surfaces. The vertex option is located on the Geometry-Vertex-Modify panel under the Tweak pull-down menu.

Note: Only curves with valence 2 or less at each vertex are candidates for tweaking. Any other curve will cause
the Geometry-Surface-Modify menu to appear.

Cubit 13.2 User Documentation

72

Merge Button

The merge command is used to merge coincident surfaces, curves, and vertices into a single entity to ensure that mesh
topology is identical at intersections. Unlike other buttons on the geometry repair panel, the merge button acts as an
"Apply" button itself. All geometry that is listed under "mergeable entities" will be merged.

Remove Button

The remove button is used to simplify geometry by removing unnecessary features. To use the remove feature, click on
the surface(s) in the Tree View. Right click and select the Remove Option, or click the Remove icon on the toolbar. The
Control Geometry-Surface-Modify control panel will appear, with the surface ids in the input window. The Remove control
panel can also be accessed from the right-click menu in the Geometry Power Tools window. Select options and press
apply.

Regularize Entity Button

The regularize button is used to remove unnecessary topology. Regularizing an entity will essentially undo an imprint
command.

Remove Slivers

The remove slivers button is used to remove surfaces with less than a specified surface area. When ACIS removes a
surface it extends the adjoining surfaces to fill the gap. If it is not possible to extend the surfaces or if the geometry is bad
the command will fail.

Auto Clean Geometry

The auto clean button is used to perform automatic cleanup operations on selected geometry. These automatic cleanup
operations include forcing sweepable configurations, automatically removing small curves, automatically removing small
surfaces, and automatically splitting surfaces.

Composite Button

The composite button is used to combine adjacent surfaces or curves together using virtual geometry . Virtual geometry is
a geometry module built on top of the ACIS representation. Surfaces may be composited to simplify geometry in order to
facilitate sweeping and mapping algorithms by removing constraints on node placement. It is important to note that solid
model operations such as webcut, imprint, or booleans, cannot be applied to models that have virtual geometry. Both
curves and surfaces may be composited.

Collapse Angle Button

The collapse angle button uses virtual geometry to collapse small angles. This is accomplished by partitioning and
compositing surfaces in a way so that the small angle gets merged into a larger angle. Pressing the collapse button on the
geometry power tools will open the collapse menu under Geometry-Vertex-Modify control panel. This panel can also be
opened by selecting Collapse from the right click menu in the Geometry Tools window.

Collapse Surface Button

Pressing this button will open the collapse surface panel on the main control panel. The collapse surface function uses
virtual geometry to eliminate small surfaces on the model to improve mesh quality. It is most useful for blend surfaces.

Collapse Curve Button

Geometry Power Tools

73

Pressing this button will open the collapse curve panel on the main control panel. The collapse curve command is used to
eliminate small curves using virtual geometry.

Reset Graphics Button

The reset graphics button will refresh the graphics window display.

Right Click Menu

The following right click menu is available from the geometry power tools. Specific options depend on the type of entity
selected.

 Zoom To- Zoom to selected entity in the graphics window

 Reset Zoom - Reset graphics window zoom

 Fly-in - Animated zoom

 Locate - Labels the selected entities in the graphics window. Refresh screen to hide.

 Draw - Displays only selected entities by themselves.

 Highlight - Highlights selected entities.

 Draw with Neighbors - Displays only selected entities with all attached neighbors

 Clear Highlights - Clears all highlighted entities and reset graphics

 Reset Graphics - Reset graphics window

 Tweak - Opens the tweak menu in the main control panel

 Remove - Opens the remove menu in the main control panel

 Remove Slivers - Opens the remove sliver menu in the main control panel

 Remove all - Available when the clicking on an item in the "small surfaces" list. Opens the remove menu in the
main control panel with all surfaces in the category as inputs. The individual option will be selected on the panel
by default.

 Split - Opens the split surface or split curve menu in the main control panel, depending on the type of entity
selected.

 Auto Clean - Opens the auto clean menu in the main control panel.

 Regularize - Issues the regularize command on selected entity.

 Merge Selected - Merge selected entity from mergeable entities list

 Merge All - Merge all entities listed in the mergeable entities list

 (Virtual) Composite - Opens the composite menu in the main control panel

 (Virtual) Collapse - Opens the collapse angle menu the main control panel

 Collapse Surface (Virtual) - Opens the collapse surface menu on the main control panel

The following right click options are available when category headings are selected.

 Analyze Geometry - Similar to pushing the Analyze button.

 Highlight All - Highlight all members of this category.

 Draw All - Display only members of this category.

 Locate All - Label all members of this category.

75

Meshing Tools

The meshing power tool provides a tool for determining whether a geometry can be meshed using autoscheme, or if it
requires its scheme to be set explicitly. This tool is designed to help guide users through geometry decomposition process
by providing a convenient way to see which geometries need further modification or decomposition prior to meshing.

Figure 1. Meshing Power Tools

Entity Specification- The meshing power tool works for volumes or surfaces.

Options Button - Opens the Tools>Options dialog to change the visualization colors of surface schemes for the
meshing tool

Analyze Button - The Analyze button issues the autoscheme command for all selected volumes and surfaces.

Output Tree - The output from the meshing tool is displayed in tree format. Geometry is divided into "Scheme Set" and
"Scheme Not Set" divisions. The geometry is listed under these nodes. If autoscheme was successful, its assigned
scheme is also displayed.

Toggle Visibility Button - The meshing tool displays entities as red or green in the graphics window. Green means that
they are currently meshable using the autoscheme. Red means that they require their scheme to be set explicitly. Turning
this capability off will return the volumes and surfaces to their original colors.

Meshing Tools Buttons - Several meshing tools are available to the user from this window. Depending on the entity
selected, these are also available from the right-click context menu, and they are described below.

Right Click Context Menu

 Zoom To - Zoom in on this element in the graphics window

 Draw - Draw this entity by itself in the graphics window

 Locate - Locates and labels entity in the graphics window

 Rotate About - Issues Rotate about command for selected entity

 Visibility On/Off - Toggle visibility

 Reset Graphics- Reset graphics display

 Set Size - Opens the Mesh/Entity/Interval panel on the control panel where you can set interval sizes for the
selected geometry

 Set Scheme - Opens the Mesh/Entity/Mesh panel on the control panel where you can set a scheme for the
selected entities

 Set Vertex Type - Available when surfaces are selected. Opens the Mesh/Surface/Mesh panel to set vertex
types.

 Imprint/Merge- Opens the Geometry/Entity/Merge panel on the control panel. If you have entities selected in
the tree window it will input them to the imprint/merge command.

 Webcut - Opens the Geometry/Volume/Webcut panel on the control panel. If a volume is selected in the
meshing tool window it will input it in the webcut panel.

 Color Surfaces - Color surfaces based on their schemes. You can change the default colors by selecting the
Options button.

 Restore Colors - Restores colors on selected entity or entity type

 Mesh - Meshes the selected entities (bypassing control panel)

 Delete Mesh - Deletes the mesh on selected entities

 Unmerge - Unmerges selected entities

 View Descendants - Opens a list of child entities and their meshing schemes. Press Analyze to return.

 View Ancestors- Opens a list of parent entities and their meshing schemes. Press Analyze to return.

 View Neighbors- Opens a list of bordering entities and their meshing schemes. Press Analyze to return.

77

Mesh Quality Tools

The mesh quality tool is located in the entity tree window under the quality tab. The Mesh Quality Tool works on meshed
entities to analyze mesh quality based on selected metrics. Output from the mesh quality analysis can be visualized using
color-coded scales. The mesh quality tool also contains tools to improve mesh quality including smoothing, refinement,
node merging, mesh validation, deleting mesh elements, and repositioning nodes.

Figure 1. Mesh Quality Tools

Entity Type - The mesh quality tools can only be applied to mesh entities including volumes, surfaces, hexahedra,
quadrilaterals, triangles, or tetrahedra.

Help Button - Opens context specific help for this topic.

Options Button - Clicking on this button will show the Tools>Option menu dialog that allows users to manually enter
metric range settings. The settings are persistent between sessions. For a description of quality metrics and default
ranges click on one of the following links:

 Metrics for Hexahedral Elements

 Metrics for Quadrilateral Elements

 Metrics for Tetrahedral Elements

 Metrics for Triangular Elements

Visual Button - Clicking on this button will open the Mesh/Entity/Quality command panel specific to the entity selected.
To visualize elements in the graphics window based on a color-coded quality scale, you must select the entities to
visualize and check the "Display Graphical Summary" check box. Once that box is selected, you must also make sure the
"Draw Mesh Elements" option is selected. Then press the Apply button

Analyze Button - This button starts the quality processing based on the metrics/filters selected.

Output Window/Tree - The failed elements are shown in the tree under the heading "Poor Elements". For each
metric/filter the output will be listed in a tree format with the following nodes.

Cubit 13.2 User Documentation

78

1. The top node on the tree is the name of the metric.
2. The next node under is the owning volume or surface when volumes or surfaces are analyzed.
3. The next node will be categories or groups of elements. Possible categories are:

o All Above Threshold - represents all mesh elements above the quality threshold upper range

o All Below Threshold - represents all mesh elements below the quality threshold lower range

o Top "n" - This will expand into a list, up to 50 elements long, of the worst offending elements above
the upper threshold range.

o Bottom "n" - This will expand into a list, up to 50 elements long, of the worst offending elements below
the lower threshold range.

4. At the lowest level of the tree are mesh elements.

The mesh elements can be sorted by quality or by numeric order. To change the way items are sorted, click on the
headings. The right-click or context menu will show various remedies depending on what is selected. Performing an
operation on a parent node will perform the same operation on all of the child nodes.

Mesh Quality Tool Buttons

The buttons on the bottom of the mesh quality tool window are some of the tools you may use to improve mesh quality
and include.

 Smooth Button - Opens the Mesh>Entity>Smooth panel

 Refine Button - Opens the Mesh>Entity>Refine panel

 Move Node - Opens the Mesh>Node>Move Node panel

 Merge Node - Opens the Mesh>Node>Merge Node panel

 Delete Mesh Element - Deletes selected mesh entity

 Validate Mesh - Issues the validate mesh command

 Check Coincident Nodes - Issues the check coincident nodes command.

 Refresh Graphics

Right-Click Context Menu Items

 Draw - issues a draw command for any tree node below the metric name.

 Color Code - Issues a 'quality draw mesh' command for any tree node below the metric name

 Locate - Issues Locate for volume/surface/hex/quad/tet/tri. The locate command will draw and label selected
entities in the graphics window.

 Fly-In - Issues Fly-in for volume/surface/hex/quad/tet/tri. The fly-in command is an animated zoom feature.

 Zoom to - Issues Zoom command for volume/surface/hex/quad/tet/tri

 Rotate About - Issues Rotate About command for volume/surface/hex/quad/tet/tri

 Vis on/off - Issues visibility on/off for volume/surface

 Smooth - Issues generic smooth command for volume/surface/hex/tet

 Smooth Surface Parent - issues a smooth surface command for the surface parents of selected quads and
tris.

 Delete Mesh - issues delete mesh propagate command for vol/surf

 Delete Elements - issues delete element command for mesh entities in all categories except 'all'

 Validate mesh - validates selected volume or surface

 Check Coincident Nodes - checks for coincident nodes on volume or surface

 Smooth Panel - brings up the correct smooth panel depending on what's selected

 Smooth Surface Panel - bring up the smooth surface panel with correct surface ids for selected quads and tris

 Merge Node Panel - brings up the panel to merge nodes

 Move Node Panel - brings up the panel to move nodes

 Reset Graphics - resets the display

79

Property Editor

The Property Editor is a window that lists properties about the current entity selection. Some of the properties, like CUBIT
ID, entity type, or geometry engine, are listed for reference only. Other attributes, like name, or mesh intervals, color,
mesh scheme, or smooth scheme can be edited from the window. The Property Editor is located on the left panel in the
GUI. The highlighted entity/entities in the graphics window are listed in the property editor window. The Property Editor
also lists information about selected mesh entities, boundary conditions, and assemblies. Selecting an object from the
Tree View will also open the object in the property editor.

Figure 1. Property Editor Window

The row of buttons on the top of the editor are shortcuts to common commands. These include:

>

Meshes the selected entity/entities at their current interval and scheme settings

Smooth selected entity using the current smoothing scheme

Preview mesh intervals on selected entity

Delete mesh on specified entity (do not propagate to lower order entities)

Reset entity to default settings and delete mesh

Cubit 13.2 User Documentation

80

Calculates volumes and surface areas

Delete current entity

Editing Entity Attributes from the Property Editor

The Property Editor provides a convenient way to change attributes on entities. . Some of the fields cannot be changed,
some can be edited from an input field, and others are edited by selecting from a list, or by opening the corresponding
window from the Control Panel.

If multiple entities are selected, the attributes that are similar to both entities will be shown. Changing an attribute from the
property editor will change that attribute on both entities. If multiple entities are selected the total volume, surface area,
and length of all entities will be shown.

Below is a summary of properties listed for each attribute type.

General Attributes

 Entity ID - CUBIT ID for geometry or boundary condition element

 Entity Type - Geometric type such as Volume, Surface, Curve, Vertex

 Name - Name by which the entity can be referred to from within CUBIT instead of using its ID. The entity name
can be edited from this window.

 Color - Opens a dialog box with available colors. A color name can also be input directly into the text field. See
Appendix for a list of available colors.

Geometry Attributes

 Is Merged - Returns "Yes" if this entity is merged

 Is Virtual - Returns "Yes" if this entity is a virtual entity

 Location - Returns the location of specified vertex.

 Geometry Engine - ACIS or Mesh-Based Geometry

 Volume - The volume of the specified body

 Surface Area - Surface area of selected surface

 Analytic Type - Returns the analytic type of entity (such as cone, sphere, etc)

 Length - Length of selected curve

Meshing Attributes

 Is Meshed - Returns "Yes" if the entity is already meshed

 Number of Elements - Similar to "List Totals" command

 Intervals - Number of mesh intervals on element. This can be edited from this window. The number must be an
integer

 Interval Size - Interval size for element. Clicking on box will open the interval specification panel on the control
panel. The interval size can also be entered manually in the text box.

 Meshed Volume - The meshed volume may be slightly different than the actual element volume due to the
mesh approximation on curved surfaces.

 Meshed Area - The meshed area may be slightly different than the actual surface area due to mesh
approximation on curved edges.

 Length of Meshed Edges - Combined total of mesh edge lengths on curve

 Mesh Scheme - The mesh scheme for this entity. This can be changed from the property editor by selecting
from the drop-down list.

 Smooth Scheme - The smooth scheme for this entity. This can be changed from the property editor by
selecting from the drop-down list.

Property Editor

81

Boundary Condition Attributes

 ID - Boundary condition ID. This is an arbitrary user-defined ID that is exported with the finite element model.
This value can be edited from the property editor

 Name - A user-defined name that is included in the metadata for that object. This value can be edited from the
property editor.

 Description - A user-defined description that is included in the metadata for that object. This value can be
edited from the property editor.

 Color - Opens a dialog box with available colors. A color name can also be input directly into the text field. See
Appendix for a list of available colors.

 Element Type - The finite element type for this block, nodeset, or sideset.

 Element Count - The total number of elements for this block or sideset

 Node Count - Total number of nodes (available for nodesets only)

 Attribute Count and Attributes- The attributes represent material specification data that is associated with the
element block. These values can be changed in the property editor. You can specify up to 10 attributes per
block.

Metadata Attributes

 Type - The metadata type: Assembly, Sub-Assembly or Part

 Name - The name for the assembly or part. This can be edited from the property window.

 Instance - The numeric value associated with the part or assembly

 Path - The absolute path of the part or assembly.

 Description - The description of the part or assembly. This can be edited from the property editor

 Material Description - The name or description of the material of which this part is composed. Applies only to
parts. This can be edited from the property window.

 Material Specification - The formal specification number of the material of which this part is composed. This
can be edited from the property window.

 File Format - The name of the file system containing the original version of this entity. This can be edited from
the property editor

 Units - The unit system of this part or assembly. This can be edited from the property editor

The part name, description and material description are available when the associated volume is selected, and not just
when the part is selected.

83

Command Line Workspace

The Command Line Workspace is the interface for command interaction between the user and the CUBIT application.
The user can enter commands into this window as if they were using the command line version of CUBIT. Journaled
commands will be echoed to this screen, even if they were not typed in manually. Thus, if the user wants to know what the
command sequence for a particular action on the GUI is, they can watch for the "Journaled Command:" line to appear. In
addition, this screen will contain important informational and error messages. The command window has the following four
tabs:

1. Command
2. Error
3. History
4. Script

The Script window is hidden by default. To turn it on open the Tools-Options dialog and check the "Show Script Tab under
Layout/Cubit Layout.

Command Window

The command line workspace emulates the environment in the command line version of Cubit. Commands can be
entered directly by typing at the CUBIT> prompt. This window also prints out error messages, informational messages,
and journaled commands.

Entering Commands

To enter commands in the command line workspace, the command window must be active. Activate the command
window by clicking anywhere inside the window. Commands are typed in at the CUBIT> prompt. If you do not remember
the specific command sequence you can type help and the name of the command phrase. The input window will show all
of the commands that contain that word or phrase. Alternatively, if you know how a command starts, but do not remember
all of the options, you can type ? at the end of the command to show all possible command completions. See Command
Syntax for an explanation of command syntax rules.

Repeating Commands

Use the Up and Down arrow keys on the keyboard to recall previously executed commands.

Commands can be repeated in other ways as well.

 Hitting the enter key while the cursor is on a previous command line will copy that command to the current
prompt.

 The command window supports copy and paste for repeating commands.

Focus Follows Cursor

Beginning with version 13.0, Cubit includes a 'focus follows cursor' option for the command window. The option can be
enabled and disabled from the Tools/Options/General options panel. The setting is persistent between sessions and is
disabled by default.

Cubit 13.2 User Documentation

84

Please note, the focus follows cursor behavior is available only in the command window. All other windows or widgets
require the user to click the mouse in order to grab focus.

Interrupting Running Tasks

Many commands can be interrupted in the middle of execution. The GUI has a cancel button that can be used to interrupt
the current command. The cancel button will turn red when a command can be interrupted. The cancel button has an 'x'
on it, and is located on the status bar, which is at the bottom of the application.

Error Window

The error window is located in the Command Line Workspace under the Error tab. If there are errors, a warning icon will
appear on the tab. The icon will disappear when you open the window to view errors. The error window only displays the
error output, which can make it easier to find and read the error output. The command that caused the error will be printed
along with the error information. If the command was from a journal file, the file name and number will be printed next to
the command.

History Window

The history window lists the last 100 commands. The number of commands listed can be configured in the options dialog
on the History page. You can re-run the commands in the history window using the context menu. You can also clear the
history using the context menu.

Script Window

CUBIT boasts a robust Python interpreter built right into the graphical user interface. To create a Python script using the
Script tab, start typing at the "%>" prompt. At the end of each line, hit Enter to move to the next line . To execute the
script, press Enter at a blank line. Scripts may also be written in the Journal File Editor.

The Claro Python interpreter works as though you were entering lines from the Python command prompt. This means that
a blank line is interpreted as the end of a block. If you want to add whitespace for clarity you have to add a # mark for a
comment on any white line that is in a loop or a class.

One possible solution to this problem is to create two Python files. The first file can contain the complex set of Python
instructions(program.py) including blank lines. The second file will read and execute the first file. An example syntax for
the second file is given below.

f = file("program.py")
commandText = f.read()
exec(commandText)

You can then execute the second program within Cubit.

The interface between cubit and python is the "cubit" object. This object has a method called cmd which takes as an
argument a command string. Thus, the following command in the script window:

cubit.cmd("create brick x 10")

will create a cube with sides 10 units long. The following script is a simple example that illustrates using loops, strings,
and integers in Python.

%>for i in range(4):
. . x=i*3
. . for j in range(4):
. . y=j*3
. . for k in range(4):
. . z=k*3
. . mystr="create vertex x "+str(x)+" y "+str(y)+" z "+str(z)
. . cubit.cmd(mystr)

This simple script will create a grid of vertices four wide. Scripts can be more advanced, even creating customized
windows and toolbars. For a complete list of python/cubit interface commands see the Appendix.

Command Line Workspace

85

Docking and Undocking the Input Window

The command window can be undocked by clicking and dragging the left edge. If it is floating it can be redocked by
double-clicking the solid blue bar. By default, it will always be redocked in the bottom of the application window. To
change the size of the floating window, click and drag the edge of the window. To change the height of the docked
window, click and drag the top edge or right edge.

87

Journal File Editor

The Journal File Editor is a built-in, multi-document text editor that can read, edit, play, and translate CUBIT journal files

and Python Scripts. To open the journal file editor, select the icon on the File Tools toolbar, or from the Tools
Menu.

Figure 1. The Journal File Editor

The Journal File Editor can be used to create a new Python or Cubit command script. By default, a new journal file will be
in Cubit command syntax. You can change the default in the options dialog. On the "General" options page, under the
Journal Editor heading, you can select the default syntax. You can change the new journal file's syntax using the
translation buttons as well. When you have the correct syntax selected, enter the commands in the order you want them
executed. You can play the commands all at once using the play button on the toolbar. You can also play a few
commands at a time. Select the commands you want to play. Then, right click and select the "Play Selected" menu item.

The Journal File Editor can also be used to edit an existing journal file. Use the File > Open menu item to open the file you
want to edit. You still have all the command play options with an existing journal file.

You can import commands entered in the Command Line Workspace. The File > Import menu item contains a list of
available imports. Select the tab you want to import from. Only the current commands will be imported from the command
line. Some of the commands you previously entered might not show up if you have the recommended text trimming turned
on. Text trimming improves the application's performance for speed and memory. It will trim off the oldest text in the
window when a size limit is reached. To get all the command from your current session, make sure that command
journaling is turned on.

The Journal File Editor can be used to edit Python or Cubit command scripts. It can also translate between the two forms.
Translating from Python to Cubit commands can cause commands to be lost. The Journal File Editor will warn you when
doing so.

The Journal File editor can be used to edit multiple files at the same time. Each document is displayed in its own tab. The
tab shows the journal file's syntax and name. If you close the Journal File Editor with unsaved data, it will prompt you to
save changes for each of the modified journal files you have open.

Cubit 13.2 User Documentation

88

Journal Editor Toolbar

The Journal Editor's Toolbar provides quick access to several important functions.

 New - Creates a new journal file. The new journal file is placed in a new tab.

 Open - Used to select a journal file to open.

 Save - Saves the current journal file.

 Undo - Undo the last text change.

 Redo - Redo the last text change, after Undo.

 Cut - Standard text cut operation

 Copy - Standard text copy operation

 Paste - Standard text paste operation

 Play Journal File - Plays the entire journal file

 Translate to Python - Translates the current Cubit commands in the journal file to Python scripts.

 Translate to Cubit - Translates the current Python script in the journal file to Cubit commands.

Other Functionality Available in the Journal Editor

The context ('right-click') menu in the journal editor includes several additional functions, including:

 Comment Selected Lines - Highlight any text, select 'comment selected lines', and the highlighted lines will be
commented.

 Uncomment Selected Lines - Highlight any text, select 'uncomment selected lines', and the highlighted lines
will be uncommented.

 Clear - select this menu item to clear the contents of the journal file.

 Find - Selecting 'find' from the context menu, or from the edit menu, will bring up a dialog enabling the user to
find text in the journal file. Options are available to do case-sensitive searches, change search direction, and so
forth.

89

Toolbars

The CUBIT toolbars provide an effective way for accessing frequently used commands.

Below is a brief description of each of the available toolbars. To view a description of the function of each tool, hold the
mouse over the tool in the CUBIT Application to display tool tips.

File

Provides CUBIT (*.cub) file operations. This toolbar also includes Journal File operations.

Figure 1. File Toolbar

Display

Controls the display mode, checkpoint undo, zoom, perspective clipping plane, and curve valence display options in the
Graphics Window.

Cubit 13.2 User Documentation

90

Figure 2. Display Toolbar

Select

Controls the Entity Selection Mode for picking or selecting entities. Also controls options for box/polygon selection.

Figure 3. Select Toolbars

91

Options Menu

To change program preferences in the Graphical User Interface select: Tools > Options . The options menu includes:

 Custom Tools

 Display

 General

 Geometry Defaults

 History and Cubit Journalling

 Label Defaults

 Layout

 Mesh Defaults

 Mouse Settings

 Post Processor

 Quality Defaults

Note: Mac users reach this dialog box by selecting the Cubit > Preferences menu.

Custom Tools

This menu controls the creation of Custom Toolbar buttons.

Display Preferences

This menu controls entity display features for the graphics window which include the following:

 Display Triad in Graphics Window

 Enable Pre-Selection

 Background Color

 Perspective Angle

 Line Width

 Highlight Line Width

 Text Size

 Ambient Intensity

 Ambient Color

 Light Intensity

 Light Color

General Preferences

This menu controls general program options including the following:

 Prompt for Unsaved Application Data - When this is checked and the user opens a new .cub file or exits the
application with unsaved changes, a dialog box will pop up asking if they want to save changes first. The user
can uncheck this option to prevent that dialog box from appearing. This is checked by default.

 Prompt for Unsaved Journal Data - When this button is checked and the user closes the journal file editor
with unsaved changes the program will prompt to save the changes. The user can uncheck this button to
prevent the dialog box from appearing. It is checked by default.

 Change to Script Directory for Playback - When this option is checked, Claro will change the working
directory to the directory the script is in when the script/journal file is run. When the script is finished, Claro will
change the directory back to the previous one. This is useful when using relative paths in a journal file. When
the option is unchecked, Claro won't change the directory when a journal file is run in which case the user may
have to manually change the working directory when their journal file has relative paths.

Cubit 13.2 User Documentation

92

 Prompt When Translating from Python - When checked, if the user translates a python script to a cubit
journal file, the journal editor will warn them that commands may be lost. When unchecked, the journal editor
will not issue the warning. There is a checkbox on the warning dialog that sets this option as well.

 Default Syntax - Sets the default syntax to use when creating a new journal file in the editor. The Cubit option
is only available when the cubit component is loaded.

 Show Startup Splash Screen - Option to hide the startup splash screen on opening Claro.

Geometry Defaults

This menu controls the geometry defaults.

 Vertex Size

 Use Silhouette on Geometry

 Silhouette pattern

The user can also change the default geometry engine to one of the following:

 ACIS

 Facets

The faceting tolerance can also be controlled from this menu to change the way facets are drawn in the graphics window.

History Preferences

This menu controls the input window history and journal file options. These include:

 Maximum Number of Commands - The max number of commands kept in the current command history.

 Comment Line Filtering - Whether to count comments in command history.

 Maximum Number of Lines - Maximum number of lines in input window.

 Journal Command History - Whether to use a journal file to save command history. Default is to use a journal
file.

 Journal File Directory - Where the journal file will be saved. Default is the starting directory.

 Journal File Name - The name of the journal file. A name will be given by default if one is not specified. The
default name for the GUI version of cubit is historyxx.jou with xx as the highest used number between 01 and
999 incremented by 1.

Cubit History Preferences

 Use Cubit Journaling - When this option is checked, Cubit journaling will be used. By default it is checked.

 Output Log - When this option is checked, you can save error log to a separate output file.

Label Defaults

This menu controls the geometry and mesh entity labels in the graphics window.

 Text Size

 Label Geometry and Mesh Entities Toggles- Choose label visibility for each type of geometry or mesh entity

Layout Preferences

This menu option controls input window formatting and control panel docking options.

 Font for command line workspace

 Font size for command line workspace

Options Menu

93

 Reset Window Layout Button - Used to reset GUI windows to their default positions

Also included in the layout preferences is a list of available windows with a checkbox to show/hide each window.

Cubit Layout Settings

This menu controls the layout of Cubit specific buttons and tabs on the GUI.

 Show script tab - Shows the script tab on the command line window

 Use Labels on Buttons- Option to apply a label to each button on the control panel

 Preferred Location (currently under construction)

Mesh Defaults

 Node Size

 Element Shrink

 Mesh Line Color - The same as "Color Lines" command.

 Default Element Type - Tet/Tri or Hex/Quad

 Surface Scheme Coloring (used in Meshing Power Tool) - This option allows you to select different colors for
surface schemes when visualized using the meshing power tools.

Mouse Settings

This menu controls mouse button controls. Pressing the Emulate Command Line Settings button will cause all of the
settings to simulate mouse controls in the command line version of CUBIT. For a detailed description of mouse settings
see the View Navigation-GUI page.

Post Processor Settings

Post Processor Executable Directory - Option to browse for post processor executable directory.

Quality Defaults

This menu controls quality defaults for different quality metrics. For a description of the different quality metrics see the
respective pages:

 Hexahedral metrics

 Quadrilateral metrics

 Tetrahedral metrics

 Triangular metrics

95

Creating Custom Toolbar Buttons

If you have a string of commands that you use frequently, it can be beneficial to make a custom toolbar button. To create
a custom toolbar button open the Tools->Options menu. You can create up to 10 custom buttons. See Figure 1 for an
example toolbar button.

Figure 1. Making a custom toolbar button to create and mesh a perforated brick

The button can have Python or Cubit commands. These commands will be executed in consecutive order when the button
is pushed. You must click the Enabled check box to activate your custom button.

You can assign a pixmap to your custom buttons or use the default. You can also assign a tool tip.

The buttons are persistent from each run of cubit. To remove a button, uncheck the Enabled button.

97

Undo Button

Cubit has an undo capability. To enable the Undo feature click on the "Enable Undo" button on the Toolbar.

 Enable Undo Button

Alternatively to turn undo on and off, the following command may be used in the command line:

 undo {on|off}

The Undo capability is implemented for geometry commands including webcutting, geometry creation, transformations,
and booleans. Multiple undos are also allowed. The commands will be undone in reverse order of their execution.

Limitations

 The undo button is not currently enabled for most meshing commands

99

Journal File Creation and Playback

Recording a Session

Command sequences can be written to a text file, either directly from CUBIT or using a text editor. CUBIT commands can
be read directly from a file at any time during CUBIT execution, or can be used to run CUBIT in batch mode. To begin and
end writing commands to a file from within CUBIT, use the command

Record '<filename>'

Record Stop

Once initiated, all commands are copied to this file after their successful execution in CUBIT.

Replaying a Session

To replay a journal file, issue the command

Playback '<filename>'

Journal files are most commonly created by recording commands from an interactive CUBIT session, but can also be
created using automatic journaling or even by editing an ASCII text file.

Commands being read from a file can represent either the entire set of commands for a particular session, or can
represent a subset of commands the user wishes to execute repeatedly.

Two other commands are useful for controlling playback of CUBIT commands from journal files. Playback from a journal
file can be terminated by placing the Stop command after the last command to be executed; this causes CUBIT to stop
reading commands from the current journal file. Playback can be paused using the Pause command; the user is prompted
to hit a key, after which playback is resumed.

Journal files are most useful for running CUBIT in batch mode, often in combination with the parameterization available
through the APREPRO capability in CUBIT. Journal files are also useful when a new finite element model is being built, by
saving a set of initialization commands then iteratively testing different meshing strategies after playing that initialization
file.

101

Controlling Playback of Journal Files

The following commands control the playback of Journal Files:

Stop

Pause

Sleep <duration_in_seconds>

Resume [<n>]

Where

Next [<n>]

The playback of a journal file can be interrupted in three ways. Pressing ctrl-c while the journal file is playing will halt
playback of the journal file. (This only works in the command line version of CUBIT. See Interrupting Running Tasks for
more information). Alternately, if the stop or pause commands are encountered in the journal file and CUBIT is reading
commands from a terminal (as opposed to a redirected file), playback of the journal file will halt after that command.

The sleep command pauses execution for the specified number of seconds. It can be used to build a delay into journal
files during presentations.

In the command line version of CUBIT you can resume playback of a journal file with the resume command. If playback
was interrupted because ctrl-c was pressed, it will resume at the next command after the one that was interrupted. If
playback stopped because of a stop or pause command in the journal file, it will resume at the next line after the stop or
pause command. If the file was paused because of a sleep command in the file, it will resume automatically after the
specified duration.

If journal files that are playing back contain playback commands themselves, there may be multiple current journal files.
The where lists all current journal files and where the journal files have paused. Each line contains the stack position (a
number), the filename and the current line in the file. Unless CUBIT is running in batch mode, the first line is always
<stdin>. This just means that CUBIT will return to the command prompt after the top-most journal file has completed.

The remaining portion of any active journal file may be skipped by specifying the stack position (first number on each line
of the output from the where command) of the file where you want to resume. Any remaining commands in active journal
files with lower stack positions will be skipped.

The next command steps through interrupted journal files line-by-line. The argument to the next command is the number
of lines to read before halting playback again. If no number is specified, the command will advance one line.

Journal playback can also be set to stop automatically when it encounters an error during playback. The command syntax
is:

Set Stop Error {On|OFF}

Setting the stop error to "on" will cause the file to halt for each error. The setting is turned off by default.

103

Automatic Journal File Creation

Controlling Automatic Journal File Creation

By default, CUBIT automatically creates a journal file each time it is executed. The file is created in the current directory,
and its name begins with the word "cubit " or "history", depending on the version of CUBIT, followed by a number starting
with cubit01.jou and continuing up to a maximum of cubit999.jou. It is recommended that the user keep no more than
around 100 journal files in any directory, to avoid using up disk space and causing confusion. To that end, when the
journal name increments to more than cubit99.jou, a warning will be given on startup telling the user that there are at least
99 journal files, and to please clean out unused files. If the user has up through cubit999.jou, then the user is warned that
there are too many journal files in the current directory, and cubit999.jou will be re-used, destroying the previous contents.

When starting cubit, the choice of journal file name to be used depends on whether it is creating a historyXX.jou file, or a
cubitXX.jou file. For historyXX.jou files, it will look for the highest used number in the current directory and increment it by
one. For example, if there are already journal files with names history01.jou, history02.jou, and history04.jou, Cubit will
use history05.jou as the current journal file. For cubitXX.jou files, Cubit will fill in gaps, starting with the lowest number. For
example, if there are already journal files with names cubit01.jou, cubit02, jou, and cubit04.jou, then Cubit will use
cubit03.jou as the current journal file.

Journal file names end with a ".jou" extension, though this is not strictly required for user-generated journal files. If no
journaling is desired, the user may start CUBIT with the -nojournal command line option or use the command :

[Set] Journal {Off | On}

Turning journaling back on resumes writing commands to the same journal file.

Most CUBIT commands entered during a session are journaled; the exceptions are commands that require interactive
input (such as Zoom Cursor), some graphics related commands, and the Playback command.

Recording Graphics Commands

All graphics related commands may be enabled or disabled with the command:

Journal Graphics {On | Off}

The default is Journal Graphics Off .

Recording Entity IDs and Names

When an entity is specified in a command using its name, the command may be journaled using the entity name, or by
using the corresponding entity type and id. The method used to journal commands using names is determined with the
command:

Journal Names {On | Off}

The default is Journal Names On .

If an entity is referred to using its entity type and id, the command will be journaled with the entity type and id, even if the
entity has been named.

Recording APREPRO Commands

APREPRO commands may be echoed to the journal file using the following command

[set] Journal [Graphics|Names|Aprepro|Errors] [on|off]

See APREPRO Journaling for more information.

Cubit 13.2 User Documentation

104

Recording Errors

The default mode for CUBIT is to not journal any command that does not execute successfully. To turn this mode off and
echo all commands to the journal file, regardless of the success status, use the following command:

Journal Errors {On|OFF}

If a command did not execute successfully and the journal errors status is ON, then the unsuccessful command will be
written as a comment to the file. For example an unsuccessful command might look like the following in the journal file

create brick x 10 x 10 z 10

Since CUBIT recognizes this as erroneous syntax, it will issue an error when the command is issued, but will still write the
command to the journal file as a comment, prefixing the command with "##".

This option may be useful when tracking or documenting program errors.

105

Idless Journal Files

Journal files can also be created without reference to entity IDs. The purpose of this command is to enable journal files
created in earlier versions of CUBIT to be played back in newer versions of CUBIT. Using the "IDless" method,
commands entered with an entity ID will be journaled with an alternative way of referring to the entity. Changes in CUBIT
or ACIS often lead to changes in entity IDs. For example, a webcut may result in volume 3 on the left and volume 4 on the
right. In another version of CUBIT, those entity IDs may be swapped (4 on the left and 3 on the right). Playing an IDless
journal file makes the actual ID of an entity irrelevant. The syntax for this command is:

[set] Journal IDless {on|off|reverse}

The on option will enable idless journaling, and commands will be journaled without entity IDs. For example, "mesh
volume 1" may be journaled as "mesh volume at 3.42 5.66 6.32 ordinal 2".

Selecting the off option will cause commands to be journaled in the traditional manner (i.e., as they are entered).

The reverse option allows you to convert idless journal files back into an ID-based journal file where the new journal file
will reflect current numbering standards for IDs.

If you issue the command Journal IDless without any additional options, then the current status of ID journaling is
printed. At startup, this should be "off".

The most likely scenario for converting older journal is to use the record command during playback. The following is an
example.

journal idless on

record "my_idless.jou"

playback "my_journal.jou"

record stop

journal idless off

To record an idless journal file back into an id-based journal file you might use the following sequence.

journal idless reverse

record "new_id_based.jou"

playback "my_idless.jou"

record stop

journal idless off

Note: IDless conversions of APREPRO expressions are partially supported.

When IDless mode is set to ON, APREPRO functions such as Vx(id), that take an ID as an argument, are converted to
use (x, y, z, ord) as arguments such as Vx(x, y, z, ord), where (x, y, z) is the center point coordinates and ord is the
ordinal value. The ordinal values, 1..n, identifies each entity in a set of n entities that have a common center point. An
entity's ordinal value is based on its creation order with respect to the other entities within the same set.

When IDless mode is set to REVERSE (using the above example) Vx(x, y, z, ord) will be converted to Vx(id). Outside
these APREPRO functions, APREPRO expressions are not modified when converting a journal file to or from its IDless
form. Hence, expressions reduced to an entity ID, such as in the command "volume {x} size 10," are not
modified. Therefore, when moving a journal file from one version of CUBIT to another, it may be necessary to manually
update IDs in APREPRO expressions.

107

Command Line View Navigation: Zoom, Pan and
Rotate

Commands used to affect camera position or other functions are listed below. All rotation, panning, and zooming
operations can include the Animation Steps qualifier, makes the image pass smoothly through the total transformation.
Animation also allows the user to see how a transformation command arrives at its destination by showing the
intermediate positions.

Rotation

Rotate <degrees> About [Screen | Camera | World] {X | Y | Z} [Animation Steps <number_steps>]

Rotate <degrees> About Curve <curve> [Animation Steps <number_steps>]

Rotate <degrees> About Vertex <vertex_1> Vertex <vertex_2> [Animation Steps <number_steps>]

Rotation of the view can be specified by an angle about an axis in model coordinates, about the camera's "At" point, or
about the camera itself. Additionally rotations can be specified about any general axis by specifying start and end points to
define the general vector. The right hand rule is used in all rotations.

Plain degree rotations are in the Screen coordinate system by default, which is centered on the camera's At point. The
Camera keyword causes the camera to rotate about itself (the camera's From point). The World keyword causes the
rotation to occur about the model's coordinate system. Rotations can also be performed about the line joining the two end
vertices of a curve in the model, or a line connecting two vertices in the model.

Panning

Pan [{Left|Right} <factor1>] [{Up|Down} <factor2>] [Screen | World] [Animation Steps
<number_steps>]

Panning causes the camera to be moved up, down, left, or right. In terms of camera attributes, the From point and At
point are translated equal distances and directions, while the perspective angle and up vector remain unchanged. The
scene can also be panned by a factor of the graphics window size.

Screen and World indicate which coordinate system <factor> is in. If Screen is indicated (the default), <factor> is in
screen coordinates, in which the width of the screen is one unit. If World is indicated, <factor> is expressed in the model
units.

Zooming

Zoom Screen <factor> [Animation Steps <number_steps>]

Zoom <x_min> <y_min> <x_max> <y_max> [Animation Steps <number_steps>]

Zoom {Group | Body | Volume | Surface | Curve | Vertex | Hex | Tet | Face | Tri | Edge | Node}
<id_range> [Animation Steps <number_steps>] [Direction {options}]

Zoom cursor [click|drag][animation steps <number>]

Zoom Reset

Zoom Screen will move the camera <factor> times closer to its focal point. The result is that objects on the focal plane
will appear <factor> times larger.

Zooming on a specific portion of the screen is accomplished by specifying the zoom area in screen coordinates; for
example, Zoom 0 .25 .25 will zoom in on the bottom left quarter of the screen.

Zooming on a particular entity in the model is accomplished by specifying the entity type and ID after entering Zoom. The
image will be adjusted to fit bounding box of the specified entity into the graphics window, and the specified entity will be
highlighted. You can specify a final direction to look at when zooming by using the direction option.

Cubit 13.2 User Documentation

108

To center the view on all visible entities, use the Zoom Reset command.

109

Mouse Based View Navigation: Zoom, Pan and
Rotate

The mouse can be used to navigate through the scene using various view transformations. These transformations are
accomplished by clicking a mouse button in the graphics window and dragging, sometimes while holding a modifier key
such as Shift or Control. When run with graphics on, CUBIT is always in mouse mode; that is, mouse-based
transformations are always available, without needing to enter a CUBIT command.

Mouse-based view transformations are accomplished by placing the pointer in the graphics window and then either
holding down a mouse button and dragging, or by clicking on a location in the graphics window. Some functions also

require one or more modifier keys to be held down; the modifier keys used in CUBIT are Shift and Control

. Each of the available view transformations has a default binding to a mouse button-modifier key combination. This
binding can be changed by the user if desired. Transformations and button mappings are summarized in the following
table.

Note: These settings are applicable only to the UNIX command line version of CUBIT. For a description of the Graphical
User Interface Mouse Operations see GUI View Navigation.

The bindings are based on the following mouse button definitions:

Figure 1. Default Mouse Function Mappings for the Command Line

Table 1. Mouse Function Bindings for Zoom, Pan, and Rotate

Function Description Binding

Rotate
Rotates the scene about the camera axis. Dragging the mouse near the
center of the graphics window will rotate the camera's X- or Y-axis;
dragging near the edge of the window will rotate about the Z-axis (i.e. about
the camera's line of sight). Type a u in the graphics window to see the
dividing line between the two types of rotation.

B1

Zoom
Zooms the scene in or out by clicking the mouse in the graphics window
and dragging up or down. If the mouse has a wheel, the wheel will also
zoom.

B2

Pan "Drags" the scene around with the mouse B3

Navigational
Zoom

Zooms the scene by moving both the camera and its focal point forward.

B2

Telephoto
Zooms the scene by decreasing the field of view.

Cubit 13.2 User Documentation

110

Zoom
B2

Pan Cursor
Click on new center of view

B3

Changing the View Transformation Button Bindings

The default mapping of functions to mouse buttons, described in the Default Mouse Function Mappings table above,
can be modified. There are two ways to assign a function to a button/modifier combination.

First, you can use the command

Mouse Function <function_id> Button <1|2|3> [Shift][Control]

Type Help Mouse Function to see a list of function IDs that may be used in this command.

Second, you can assign functions interactively. To do so, first put the pointer into a graphics window and then hit the F
key. On-screen instructions will lead you through the rest of the process.

Saving and Restoring Views

After performing view transformations, it may be useful to return to a previous view. A view is restored by setting the
graphics camera attributes to a given set of values. The following keys, pressed while the pointer is in the graphics
window, provide this capability:

V - Restores the view as it was the last time Display was entered.

F1 to F12 - These function keys represent 12 saved views. To save a view, hold down the Control
key while pressing the function key. To restore that view later, press the same function key without
the Control key.

Note: In the Graphical User Interface version the F1, F2 and F3 keys are used as an alternate form of dynamic viewing,
therefore the ability to save views is not currently supported in the GUI.

You can also save a view by entering the command

View Save [Position <1-12>] [Window <window_id>]

The current view parameters will be stored in the specified position. If no position is specified, the view can be restored by
pressing V in the graphics window. If a position is specified, the view can be restored with the command

View Restore Position <1-12> [Window <window_id>]

These commands are useful in as entries in a .cubit startup file. For example, to always have F1 refer to a front view of
the model, the following commands could be entered into a .cubit file:

From 0 1

At 0

Up 0 1 0

Graphics Autocenter On

View Save Position 1

The first three commands set the orientation of the camera. The fourth command ensures that the model will be centered
each time the view is restored. The final command saves the view parameters in position 1. The view can be restored by
pressing F1 while the cursor is in a graphics window.

Additionally, you can change the 'gain' on the mouse movements by changing the mouse gain setting, via the command:

Mouse Gain <value>

Mouse Based View Navigation: Zoom, Pan and Rotate

111

where a value of 3 would be 3X as sensitive to mouse movements, and a value of 0.5 would be half as sensitive.

Set ReverseZoom {on|off}

Another user preference, the direction of 'zooming' obtained by using the mouse can be 'flipped', by toggling the
reversezoom setting.

113

Updating the Display

Among the most common graphics-related commands is:

Display

This command clears all highlighting and temporary drawing, and then redraws the model according to the current
graphics settings. Two related commands are:

Graphics Flush

Graphics Clear

Graphics Flush redraws the graphics without clearing highlighting or temporary drawing. Graphics Flush is useful when
a previously executed command modified the graphics and didn't update the screen and the user wishes to update the
display. The Graphics Clear command clears the graphics window without redrawing the scene, leaving the window
blank.

NOTE: Although most changes to the model are immediately reflected in the graphics display, some are not (for graphics
efficiency). Typing Display will update the display after such commands. Ctrl-R will also update the display as long as the
mouse is in the graphics window.

Prevent Graphics From Updating

For especially large models, it may take excessively long to update the display after an action has been performed. To
prevent the graphics from automatically updating, use the following command:

Graphics Pause

This command prevents the graphics window from being updated until the next time the Display command is issued.

NOTE: The Plot command is synonymous to the Display command, and either can be used with identical results.

115

Graphics Modes

By default, the scene is viewed as a smoothshaded model. That is, only curves and edges are drawn, and surfaces are
transparent. Surfaces can be drawn differently by changing the graphics mode:

Graphics Mode {Wireframe | Hiddenline | Smoothshade | Transparent } [Geometry | Mesh]

Examples and a brief description of each mode are shown below

WireFrame - Surfaces are invisible. (This mode can also be
accessed by typing 'wireframe' at the command prompt.)

HiddenLine - Surfaces are not drawn, but they obscure what is
behind them, giving a more realistic representation of the view. (This
mode can also be accessed by typing 'hiddenline' at the command
prompt.)

SmoothShade - Surfaces are filled and shaded. Shaded colors are
interpolated across the entire surface using the graphics lighting
model. This produces the most realistic results. (This mode can also
be accessed by typing 'shaded' at the command prompt.)

Transparent - Renders surfaces as semi-transparent shaded images,
allowing objects to shine-through from behind. Is not supported on all
platforms, and generally requires advanced graphics hardware. (This
mode can also be accessed by typing 'transparent' at the command
prompt.)

This determines what pattern is used to draw lines behind surfaces (e.g. dotted, dashed, etc.; click here for a list of valid
line patterns).

Cubit 13.2 User Documentation

116

Displaying Using the Element Facets

There is another option that is similar to a graphics mode, set with the command

Graphics Use Facets [On|Off]

This command determines how shaded and filled surfaces are drawn when they are meshed. If Graphics Use Facets is
on, the mesh facets (element faces) are used to render the model. This is particularly helpful for curved surfaces which
may cut through some of the mesh faces. A comparison of graphics facets on and off is shown below.

Figure 1. A meshed cylinder shown with graphics facets off (left) and graphics facets on (right); note how geometry facets
on the curved surface obscure mesh edges when facets are off.

Displaying Composite Surface Lines

Composite surfaces are surfaces that have been joined together using virtual geometry. By default, the underlying
surfaces are marked with dashed lines. To toggle this setting so that underlying surfaces are not shown, use the following
command:

Graphics Composite {On|Off}

Figure 2. A part shown with (a) composite surfaces displayed (b) composite surfaces not displayed

117

Drawing and Highlighting Entities

In order to effectively visualize the model, it is often necessary to draw an entity by itself, or several entities as a group.
This is easily done with the command

Draw {Entity specification} [Color <color_spec>] [Zoom] [Add]

where Entity specification is an entity list as described in Command Line Entity Specification. This command clears the
display before drawing the specified entity or entities. Specification of a color will draw those entities in that color. This will
not permanently change the color of the entity. The zoom option will zoom in on the selected entities after drawing them in
the graphics window. If the add option is specified, the display is not cleared, and the given entity is added to what is
already drawn on the screen. The entities specified in this command are drawn regardless of their visibility setting (see
Geometry and Mesh Entity Visibility for more details about visibility).

Entities may also be drawn by selecting them with the mouse and then typing Ctrl-D while the mouse is in the graphics
window. This will clear the screen and then draw only those entities that are currently selected.

Entities can be highlighted using the command

Highlight {Entity specification}

This command highlights the specified entities in the current display with the current highlight color. Highlighting can be
removed using the command

Graphics Clear Highlight

To return to the normal display of the entire model, type Display.

The Locate command will label and point to the specified entity in the graphics window. The command syntax is:

Locate <entity_list>

Additionally, the visibility of individual entities, or sets of entities, can be controlled with the following visibility commands.

{Vertex|Curve|Surface|Volume|Body|Group} <range> [Geometry|Mesh] Visibility {on|off}

Edge [Visibility] {on|off}

{Mesh|Geometry} [Visibility]{on|off}

Drawing Other Objects

In addition to the common geometry, mesh and genesis entities, other objects may be drawn with variations of the Draw
command. As with the other Draw commands, typing Display after drawing these objects will restore the scene to its
normal display.

Displaying Entity Orientation

The normal to one or more surfaces, mesh faces, or mesh triangles may be drawn with the command

Draw {Surface | Face | Tri} <id_range> Normal [Length <length>] [Face | Tri]

If the Face or Tri qualifier is included in the Draw Normal command, the normals for all faces or tris that belong to the
specified surface are drawn.

The forward, or tangent, direction of a curve can be drawn with the command:

Draw Curve <id_range> Tangent [Length <length>][Color <color_spec>]

If a color is not specified, the tangent is drawn in the same color as the curve.

Cubit 13.2 User Documentation

118

Volume Sources and Targets

Once the source and target surfaces have been set on a volume that will be meshed with the sweep algorithm, the source
and target may be visually identified with the command

Draw Volume <volume_id_range> [Source][Target] [Length <size>]

If the Source keyword is included, the normal of the source surface or surfaces will be drawn in green into the specified
volume. If the Target keyword is included, the normal of the target surface or surfaces will be drawn in red into the
specified volume.

Model Axis

The model axis may be drawn with the command

Draw Axis [Length <length>]

The axis is drawn as three lines beginning at the model origin, one line in each of the three coordinate directions. The
length of those lines is determined by the length parameter, which defaults to 1.

Surface Isoparameter Lines

Isoparameter lines may be drawn on surfaces in the model using the command

Draw Surface <surface_id_range> Isoparametric [Number <number>| [u <number>] [v <number>]]

If you specify the Number of lines, then the number of u- and v-parameter lines will be equal. You may specify instead a
number of lines for each of the u and v parameters. The u-parameter lines will be drawn in red and the v-parameter lines
will be drawn in blue.

Surface Overlap

The overlapping regions between two surfaces may be drawn with the command

Draw Surface <id> <id>Overlap [Add]

This command will draw the curves of each of the surfaces in green, and the portion of the surfaces that overlap in red.
The Add keyword will draw the overlapping surfaces on top of the current graphics display. Without the Add keyword, the
display will only show the specified surfaces and their overlapping regions.

Volume Overlap

The overlapping region between two volumes may be drawn with the command

Draw Volume <id> <id> Overlap [Add]

This command will draw the input volumes in transparent mode and draw the volume(s) of intersection as red, shaded
solids. The Add keyword will draw the results on top of the current graphics display. Without the Add keyword, the display
will only show the specified volumes along with the intersection volume(s).

Geometry Preview

Several options are available for previewing geometry without actually generating it. This is typically used in conjunction
with webcutting and surface creation. The following Draw commands can be used for previewing geometry:

Draw Location On Curve

Draw Location

Draw Direction

Draw Axis

Draw Plane

Drawing and Highlighting Entities

119

Draw Cylinder

121

Mesh Visualization

A volume mesh can be viewed one layer at a time using a visualization tool known as mesh slicing. This tool divides the
elements of one or more volumes into axis-aligned layers, and then allows the mesh to be displayed one layer at a time.
Mesh slicing is especially useful to view the quality of swept meshes that are axis aligned.

Notes on Mesh Slicing

Mesh slicing is only intended to be a rough visualization tool. Because the average mesh edge length is used to
determine the thickness of each layer, a layer may be more than one element deep. Unstructured meshes, meshes with
large variations in edge length, and non-axis-aligned meshes will be more difficult to visualize with this tool.

Mesh Slicing Command

Mesh slicing can be started either by entering a keypress in the graphics window, which slices the mesh of the entire
model, or by entering the command

Graphics Slice {Body | Volume} <id_range> Axis {X | Y | Z}

which slices only the bodies or volumes indicated, with a plane along the axis specified.

Key presses in the graphics window which control mesh slicing are summarized in the following table.

Key Action

X,Y or Z Initiate mesh slicing using the X, Y or Z plane

K Move the slicing plane in the positive coordinate direction

J Move the slicing plane in the negative coordinate direction

S Toggles drawing single or multiple slice layers in the view

Q Exit from mesh slicing mode

123

Graphics Clipping Plane

The graphics clipping plane feature allows the user to temporarily cut parts of the model away to help visualize the interior
of a geometry or mesh. The command syntax is:

Graphics Clip {On|Off} [Location <location>] [Direction <direction>]

Graphics Clip Manipulation {On|Off}

The first command activates the graphics clip manipulation tools in the graphics window. The keyboard shortcut "Shift-S"
while the graphics window is active will also activate the clipping plane. The manipulation of the clipping plane is
controlled as follows:

 Red Line - Clicking and dragging the left mouse on plane bounded by a red tube moves the plane along the
arrow

 Center Ball - Clicking and dragging the left mouse on the center ball moves the origin of the rotation plane

 Arrow - Clicking and dragging the left mouse button on the arrow head or tail changes the direction on which
the plane moves

 Right Mouse Button - Clicking and dragging the right mouse button on any part of the window resizes it

 Middle Mouse Button - Clicking and dragging the middle mouse button on the red plane moves both the
center of rotation and the cutting plane

 White Bounding Border - Clicking and dragging the left mouse on the white bounding border moves the whole
widget

Figure 1. Graphics Clipping Plane

The second command turns on/off the visibility of manipulation widget in the graphics window. The clipping plane is still
active, but the controls are hidden. The normal mouse-based view navigation controls apply.

Cubit 13.2 User Documentation

124

Examples

brick x 10
sphere rad 1
graphics clip on location -2 0 0
rotate -45 about y
#shows the sphere inside the brick

brick x 10
cylinder rad 2 z 12
subtract 2 from 1
mesh vol 1
quality vol 1 draw mesh
graphics clip on
#shows the mesh quality on interior elements

Figure 2. Viewing mesh quality of interior elements

125

Entity Labels

Most entities may be labeled with text that is drawn at the centroid of the entity.

Mesh entities can be labeled with their ID number or their Genesis ID. Genesis ID labels are only valid after exporting a
mesh.

Geometric entities can be labeled with their ID number or with other information.

Labels for groups of entity types can be turned on or off.

The following commands will accomplish this.

Label [On|Off|Name [Only|ID]|ID|Interval|Size|Merge|Firmness]

Label All [On|Off|Name [Only|ID]|ID|Interval|Size|Merge|Firmness]

Label Body [On|Off| Name [Only|ID] |ID|Interval|Size| Merge |Firmness]

Label Curve [On|Off|Name [Only|ID] |ID| Interval| Size| Merge| Firmness]

Label {Hex|Tet|Face|Tri|Edge} [On|Off]

Label Geometry [On|Off|Name [Only|ID] |ID| Interval| Size| Merge| Firmness]

Label Mesh [On|Off]

Label Node [On|Off|Genesis]

Label Surface [On|Off|Name [Only|ID] |ID| Interval| Scheme| Size| Merge| Firmness]

Label Vertex [On|Off|Name [Only|ID] |ID|Interval| Size| Merge| Firmness]

Label Volume [On|Off|Name [Only|ID] |ID |Interval| Size |Scheme |Merge |Firmness]

The meaning of each of each label type is listed below. Note that some label types don't make sense for every entity type.

On - The same as IDs.

Name - Name of the entity, if the entity has been named. Default name otherwise.

Name Only - If the entity has been named, use the name as the label. Otherwise, don't use a label.

Name IDs - If the entity has been named, use the name as the label. Otherwise, use the ID as the
label.

Interval - The number of intervals set on the entity.

Firmness - Same as interval, but followed by a letter indicating the firmness of the interval setting
(see the Mesh Generation chapter for description of firmness settings.)

Merge - Whether or not the entity is mergeable. Note that this is sometimes not clear, because, for
example, a curve may show that it isn't mergeable because one of its owning surfaces may be
unmergeable, while another owning surface may be mergeable.

Size - The mesh size set on this entity.

Note: Three dimensional entity types such as body will have their labels displayed in the center of the entity. Thus, in the
smooth shade and hidden line graphics modes the labels will be hidden

127

Colors

Specifying Colors in Commands

There are five ways to refer to a color in a command. They are

1. <Color_Name>
2. User "name"
3. ID <id>
4. Default
5. Highlight

The first option uses the name of a pre-defined color as listed in the Available Colors Appendix. This option may not be
used for user-defined colors. An example of a pre-defined color assignment is given below:

color volume 1 lightblue

The second option is used with user-defined colors only. Include the name of the user-defined color in quotes. Pre-defined
colors will not work with this command.

color volume 1 user "mycolor"

The third option allows you to identify a pre-defined color by its ID. The color IDs are also listed in the Available Colors
appendix. This option is rarely used.

color volume 1 id 5

The default option is used to set an entity's color to its default value. The default color may also be specified in drawing
commands, but the command's behavior will be the same as if the color option had not been included at all.

color volume 1 default

The fifth option refers to the current highlight color.

draw curve 1 tangent color highlight

User-Defined Colors

CUBIT has a palette of 85 pre-defined colors, listed in the Appendix under Available Colors. Users may also define their
own colors in addition to those defined by CUBIT. Each color is defined by a name and by its RGB components, which
range from 0 to 1.

To define an additional color, use either of the commands

Color Define "<name>" RGB <r g b>

Color Define "<name>" R <r> G <g> B .

A maximum of 15 user-defined colors may be stored at one time, so it may be necessary to clear a color definition. This is
done with the command

Color Release "<color_name>"

Color names can be listed with the command

Help Color

They are also listed in the appendix of this manual, along with their RGB definitions. To view a chart of color names and
IDs, including those for user-defined colors, use the command

Draw Colortable

Cubit 13.2 User Documentation

128

Assigning Colors

Colors may be assigned to all geometric entities, and to some other objects as well. To assign a color to an entity or other
object, use one of the following commands.

Color Axis Labels {<color_name>| id <color_id>}

Color Background {<color_name>| id <color_id>} [<color_name2>|id <color_id2>]

Color Block <block_id_range>{<color_name> | id <color_id>}

Color Body <body_id_range> [Geometry|Mesh] {<color_name>| id <color_id> | Default}

Color Curve <curve_id_range> [Geometry|Mesh] {<color_name>| id <color_id> | Default}

Color Group <group_id_range> [Geometry|Mesh] {<color_name>| id <color_id> | Default}

Color Highlight {<color_name>| id <color_id>}

Color Lines <color_name>

Color NodeSet <id_range> { <color_name> | id <color_id> | Default }

Color SideSet <id_range>{ <color_name> | id <color_id> | Default }

Color Surface <surface_id_range> [Geometry|Mesh] {<color_name>|Default}

Color Title {<color_name>|id <color_id>}

Color Volume <volume_id_range> [Geometry|Mesh] {<color_name>| id <color_id> | Default}

Including the Mesh keyword will change the color of the mesh belonging to the specified entity, without changing the color
of the entity geometry itself. Conversely, including the Geometry keyword will change the geometry color without changing
the mesh color. Including both keywords is identical to including neither keyword.

Colors are inherited by child entities. If you explicitly set the color for a volume, for example, all of its surfaces will also be
drawn in that color. Once you assign a color to an entity, however, it will remain that color and will no longer follow color
changes to parent entities. To make an entity follow the color of its parent after having explicitly set another color, use
Default as the color name in the color command.

Colors can also be assigned to nodesets, sidesets, and element blocks. These colors do not take effect, however, unless
the nodeset, sideset, or element block is drawn with a Draw command.

The background color and the color used to draw highlighted entities can be changed to any color.

By default, the axes are labeled with a white X, Y, and Z, indicating the three primary coordinate directions. If the
background is changed to white, these labels are impossible to read; the color used to draw axis labels can be changed to
any color. Changing the axis label color will change the text color for both the model axis and the triad (corner axis).

When several entity types are labeled, it can become difficult to determine which labels apply to which entities. To help
distinguish which entities are being referred to by the labels, you may want to change the color of labels for specific entity
types.

When a meshed surface is drawn in a shaded graphics mode, the mesh edges are not drawn in the same color as the
surface. This is to prevent confusion between mesh edges and geometric curves, and to make the mesh edges more
visible. The color used to draw mesh edges in this situation is known as the line color, and is gray by default; this color
can be changed to any color.

Assigning Global Colors

Colors may be assigned globally also. To assign a global color, use one of the following commands. Global color
assignment is useful if one desires all entities to appear the same.

Color Global {<color_name>| id <color_id> | default}

Colors

129

Color Global Surface {<color_name>| id <color_id> | default} Curve {<color_name>| id <color_id> |
default} Vertex {<color_name>| id <color_id> | default}

The first command assigns the desired color to all geometry entities. The color may be enter by color name or color id.
The default option resets colors to the default value.

The second command assigns the desired colors to surfaces, curves and vertices. All three value must be entered. For
example, users my select global colors for surface and vertex and specify that curves have default colors.

131

Geometry and Mesh Entity Visibility

The visibility of geometric and mesh entities can be turned on or off, either individually, by entity type, by general entity
class (mesh, geometry, etc.), or globally. Note that these commands do not refresh automatically. To refresh type display
or graphics flush or click in the display window.

The commands to set the visibility are:

{ {Body|Curve|Surface|Volume} <range> } [Mesh][Geometry] Visibility [On|Off]

Edge Visibility [On | Off]

Vertex [Visibility] [on|off]

{Mesh|Geometry} { [Visibility] [on|off] }

If the Mesh keyword is included, only the visibility of the mesh belonging to the specified entity is affected. Similarly, if the
Geometry keyword is included, only the visibility of the geometry is affected. Including neither keyword is identical to
using both keywords.

Invisibility of geometry is inherited; visibility is not. For example, if a volume is invisible, its surfaces are also invisible
unless they also belong to some other visible volume. As another case, if the volume is visible, but a surface is set to
invisible, the surface will not follow its parent's visibility setting, but will remain invisible.

If edge visibility is off, mesh edges will not be drawn when mesh faces are drawn.

If vertex visibility is turned on, the vertices of the geometry become visible. The default for vertex visibility is off.

After turning mesh visibility off, all mesh will remain invisible until mesh visibility is turned on again. This is true no matter
what other visibility commands are entered.

Similarly, after turning geometry visibility off, all geometry will remain invisible until geometry visibility is turned on again.
This is true no matter what other visibility commands are entered.

133

Graphics Camera

One way to change what is visible in the graphics window is to manipulate the camera used to generate the scene. A
scene camera has attributes described below, and depicted graphically in Figure 1. The values of these camera attributes
determine how the scene appears in the graphics window.

Position (From) - The location of the camera in model coordinates.

View Direction (At) - The focal point of the camera in model coordinates.

Up Direction (Up) - The point indicating the direction to which the top of the camera is pointing. The Up point determines
how the camera is rotated about its line of sight.

Projection - Determines how the three-dimensional model is mapped to the two-dimensional graphics window.

Perspective Angle - Twice the angle between the line of sight and the edge of the visible portion of the scene.

Figure 1: Schematic of From, At, Up, and Perspective Angle

At any time, the camera can be moved back to its original position and view using the command

View Reset

To see the current settings of these attributes, use the command

List View

The current value of the view attributes will be printed to the terminal window, along with other useful view information
such as the current graphics mode and the width of the current scene in model coordinates.

Camera Attributes can be changed using the Rotate, Zoom and Pan commands, or directly as follows.

Changing Camera Attributes Directly

Camera attributes are most easily modified using interactive mouse manipulation (see Mouse-Based View Navigation) or
using the rotate, pan and zoom commands. However, the camera attributes can also be modified directly with the
following commands:

From <x y z>

At <x y z>

At {Body|Volume|Surface|Curve|Vertex|Hex|Tet|Wedge|Tri|Face|Node}<id_list>

Up <x y z>

Cubit 13.2 User Documentation

134

Graphics Perspective <On|Off>

Graphics Perspective Angle <degrees>

If graphics perspective is on, a perspective projection is used; if graphics perspective is off, an orthographic projection is
used. With a perspective projection, the scene is drawn as it would look to a real camera. This gives a three-dimensional
sense of depth, but causes most parallel lines to be drawn non-parallel to each other. If an orthographic projection is
used, no sense of depth is given, but parallel lines are always drawn parallel to each other.

In a perspective view, changing the perspective angle changes the field of view by changing the angle from the line of
sight to the edge of the visible scene. The effect is similar to a telephoto zoom with a camera. A smaller perspective angle
results in a larger zoom. This command has no effect when graphics perspective is off.

135

Graphics Lighting Model

For shaded graphics display modes, the lighting model controls the intensity of the highlights and shadows for objects
displayed in the graphics window. CUBIT offers two commands for controlling the lighting model.

Graphics Ambient Intensity {<intensity> | <r g b>}

Graphics Light Intensity {<intensity> | <r g b>}

The ambient intensity is the light available in the environment. There is no particular direction to the light source. In
contrast, the light intensity is the effect of a simulated light source placed at the viewer's line of sight. The light intensity
affects the intensity of the highlights and shadows, while the ambient intensity affects the brightness of the objects in the
overall scene.

An intensity value from 0 to 1 can be used, where 0 represents no light and 1 represents maximum. Alternatively r g b
color components can be used. This changes the color of the directional or ambient light source, affecting the resulting
color of the objects in the model.

137

Graphics Window Size and Position

By default in the command line version, CUBIT will create a single graphics window when it starts up (to run CUBIT
without a graphics window, include -nographics on the command line when launching CUBIT.) The graphics window
position and size is most easily adjusted using the mouse, like any other window on an X-windows screen. However, the
size of the graphics window can also be controlled using the following commands:

Graphics WindowSize <width_in_pixels> <height_in_pixels>

Graphics WindowSize Maximum

Graphics WindowSize Minimum

After using the Graphics WindowSize Maximum and Graphics WindowSize Minimum commands, the previous
window size can be restored by using the command

Graphics WindowSize Restore

The position of the graphics window can also be controlled using the Graphics WindowLocation command.

Graphics WindowLocation <x> <y>

The <x> and <y> coordinates refer to the distance in pixels from the upper left hand corner of the monitor.

In addition, on Unix workstations, the graphics window size and position can be controlled by placing the following line in
the user's .Xdefaults file:

cubit.graphics.geometry XxY+xpos+ypos

where the X and Y are window width and height in pixels, respectively, and xpos and ypos are the offsets from the upper
left hand corner.

Using Multiple Windows

You can use up to ten graphics windows simultaneously, each with its own camera and view. Each window has an ID,
from 1 to 10, shown in the title bar of the window. Commands that control camera attributes apply to only one window at a
time, the active window. Currently, the display lists of all windows are identical.

The following commands are used to create, delete, and make active additional graphics windows.

Graphics Window Create [ID]

Graphics Window Delete <ID>

Graphics Window Active <ID>

139

Saving Graphics Views

The current graphics view can be saved and restored using the following commands:

View Save Position <n>

View Restore Position <n>

When you save a view, you save the camera settings in effect at the time the command is issued. When you restore the
view, the camera is returned to the saved position, orientation, and field of view.

If autocenter is on at the time you save the view, then restoring the view will automatically adjust the camera settings to
center on the entire model and fit the entire model on the screen, a lot like "zoom reset." You turn autocenter on by typing
"graphics autocenter on."

Example of how to save a top view:

at 0

from 0 1 0

up 1 0

graphics autocenter on

view save position 3

Use this command to restore that view:

view restore position 3

The view will then be looking down the y-axis, with the x-axis to the top and the z-axis to the right. The model will be
centered in the view and zoomed so that everything just fits into the graphics window. This is true even if the model is not
centered on the origin.

If autocenter is off when the "view save" command is issued, the camera is not adjusted to fit the scene into the graphics
window. Instead, it is placed exactly where it was at the time the "save" command was issued.

Note that many graphics commands, such as "at", "from", and "up", do not change what appears in the graphics window
until a "display" command is issued. They do, however, take immediate effect internally, and they do affect what is saved
by the "view save" command.

In the command line version of CUBIT, you can save a view by holding down the shift key and pressing one of the
function keys (F1-F12). Each function key corresponds to a different saved view. A total of 12 views can be saved. A view
can be restored at a later time by pressing the appropriate function key WITHOUT holding down the shift key.

It may be useful to save views in your cubit file so that they are available every time you run CUBIT. Use CUBIT to save
front, top, and side views in positions 1, 2, and 3. If views are saved in your cubit file, it is convenient to add a "view reset"
command after the views have been saved. Then the graphics will initially appear as they would if the view commands
had not been included in your cubit file.

141

Hardcopy Output

CUBIT's Graphical User Interface provides the capability to print the contents of the graphics window directly to a printer.

In addition, a command line option is provided for dumping the contents of the graphics window to postscript or image
files.

The command for generating hardcopy output files is:

Hardcopy '<filename>' {jpg | gif | bmp | pnm | tiff | eps} [Window <window_id>]

Each of these options saves the view in the specified window (or the current window), to the specified file, in the format
indicated. The file can then be sent to a printer or inserted into another document.

Screen Capture Programs

It should also be noted that many commercial applications are available for capturing screen images. In many cases,
these applications may be more convenient for interactively capturing and saving a portion of the screen than the
Hardcopy command discussed above. On UNIX platforms, the XV utility written by John Bradley is a good choice. In
some cases this utility or its equivalent may be included with your system software. For Windows users, the Print Screen
button will send a copy of the screen to the clipboard which can then be pasted into a paint program.

http://www.trilon.com/

143

Miscellaneous Graphics Options

In addition to the commands discussed above, there are several other graphics system options in Cubit that can be
controlled by the user.

They include:

 Silhouette Lines

 Line Width

 Highlight Line Width

 Text Size

 Point Size

 Graphics Status

 Graphics Scale

 Model Axis

 Corner Axis

 Resetting the Graphics

 Shrink

 Facet Tolerance

Silhouette Lines

Some shapes, such as cylinders, are drawn with silhouette lines; these lines don't represent true geometric curves, but
help visualize the shape of a surface. Silhouette lines can be turned on or off with the command

Graphics Silhouette [On|Off]

The pattern used to draw silhouette lines can be set using the command

Graphics Silhouette Pattern [Solid | Dashdot | Dashed | Dotted | Dash_2dot | Dash_3dot | Long_dash
| Phantom]

Line Width

This option controls the width of the lines used in the wireframe, shaded, transparent, hiddenline and truehiddenline
displays. The default is 1 pixel wide. The command to set the line width is

Graphics LineWidth <width_in_pixels>

Highlight Line Width

This option controls the width of the lines used when highlighting an entity. Setting this to a width greater than the global
line width often makes it easier to locate highlighted entities. If this setting has not been changed, the line width set in the
command above is used. After using this command, it is necessary to refresh the graphics by either typing "display" or
clicking the Refresh Graphics button. The command to set the highlighting line width is

Highlight LineWidth <width_in_pixels>

Text Size

This option controls the size of text drawn in the graphics window. The size given in this command is the desired size
relative to the default size. After using this command, it is necessary to refresh the graphics by either typing "display" or
clicking the Refresh Graphics button. The command to set the text size is

Graphics Text Size <size>

Cubit 13.2 User Documentation

144

Point Size

This option controls the size of points drawn in the graphics window, such as vertices or heads of vectors; alternatively,
the size of points representing nodes or vertices can be set independently of the global point size. The commands to set
the point sizes are

Graphics Point Size <size>

Graphics [Node|Vertex] Point Size <size>

Graphics Status

All graphics commands can be disabled or re-enabled with the command

Graphics {On|Off}

While graphics are off, changes in the model will not appear in the graphics window, and all graphics commands will be
ignored. When graphics are again turned on, the scene will be updated to reflect the current state of the model.

Graphics Scale

A graphical scale can be drawn in the graphics window within the viewing area to obtain a bearing on model or part sizes.
The command to turn the graphical scale on and off is:

Graphics Scale [On|Off]

Model Axis

The model axis may be drawn in the scene at the model origin. The axis is controlled with the command

Graphics Axis [Type <AXIS | Origin>] [On|Off]

The command is used to specify whether the model axis is visible, and to determine how the axis is drawn. If you include
Type Axis , the axis will be drawn as three orthogonal lines; if you include Type Origin, the axis will be drawn as a circle at
the model origin.

Corner Axis (Triad)

By default, an axis appears in the corner of the graphics window. This corner axis, also called the triad, can be disabled or
re-enabled with the command

Graphics Triad [On | Off]

Resetting the Graphics

Many of the graphic options can be reset back to default values with the command:

Graphics Reset

The graphic options set to defaults are:

 ambient and spot light intensity

 background color

 text size

 graphics mode

 silhouetting

 point size

 view type (Perspective)

In addition, this command also:

Miscellaneous Graphics Options

145

 centers the view on all visible entities (Zoom Reset)

 turns all labeling off

 turns vertex visibility off

 turns mesh and geometry visibility on

 moves the graphics camera back to its original position (View Reset)

Shrink

The shrink graphics attribute allows you to view the elements shrunken about their centroid. This is useful for viewing 3D
meshes, permitting viewing of interior elements. It may also be useful for visually inspecting the mesh for missing
elements. To use the shrink option use:

graphics shrink <value>
draw hex <range>
draw tet <range>
etc...

where value is a number between 0 and 1. One (1) will shrink the elements to a point, while zero (0) will not shrink the
elements. The following figures illustrate the effect of element shrink on a hex mesh.

Cubit 13.2 User Documentation

146

Figure 1. Top: shrink=0.2, Bottom: shrink=0.5

Facet Tolerance

The graphics tolerance commands change the way that facets are drawn in the graphics window. It does not affect the
underlying geometry, just the graphics display. It can be useful to change the facet tolerance on large models if the
refresh speed is slow.

Graphics Tolerance [[ANGLE|Distance] <val>|Default]

Specifying an angle will change the maximum allowable angle between neighboring facets. The distance option will set a
maximum distance between adjacent facets. Increasing either of these numbers will result in coarser facets. The default
option will return values to their default settings.

147

Command Line Entity Specification

CUBIT identifies objects in the geometry, mesh, and elsewhere using ID numbers and sometimes names. IDs and names
are used in most commands to specify which objects on which the command is to operate.

These objects can be specified in CUBIT commands in a variety of ways, which are best introduced with the following
examples (the portion of each command which specifies a list of entities is shown in blue):

General ranges: Surface 1 2 4 to 6 by 2 3 4 5 Scheme Pave

Combined geometry, mesh, and genesis entities: Draw Sideset 1 Curve 3 Hex 2 4 6

Geometric topology traversal: Vertex in Volume 2 Size 0.3

Mesh topology traversal: Draw Edge in Hex 32

All keyword: ListBlock all

Expand keyword: my_curve_group expand Scheme Bias Factor 1.5

Except keyword: List Curve 1 to 50 except 2 4 6

In addition to the examples above, there is an extended parsing capability that allows entities to be specified by a general
set of criteria. See Extended Entity Specification for details. The following is a simple example of an extended entity
specification:

By Criteria: Draw Curve With Length > 3

Types of Entity Range Input

The types of entity range input available in CUBIT can be classified in 4 groups:

1. General range parsing

Entity IDs can be entered individually (volume 1), in lists (volume 1 2 3), in ranges (volume 3 to 7), and in
stepped ranges (volume 3 to 7 step 2). The word all may also be used to specify all entities of a given type.

An ID range has the form <start_id> to <end_id>. It represents each ID between start_id and end_id, inclusive.

A stepped ID range has the form <start_id> To <end_id> {Step|By} <step>. It represents the set of IDs
between start_id and end_id, inclusive, which can be obtained by adding some integer multiple of step to
start_id. For example, 3 to 8 step 2 is equivalent to 3 5 7.

The various methods of specifying IDs can be used together. For example:

draw surface 1 2 4 to 6 vertex all

2. Topological traversal

Topological traversal is indicated using the "in" identifier, can span multiple levels in a hierarchy, and can go
either up or down the topology tree. For example, the following entity lists are all valid:

vertex in volume 3

volume in vertex 2 4 6

curve 1 to 3 in body 4 to 8 by 2

If ranges of entities are given on both sides of the "in" identifier, the intersection of the two sets results. For
example, in the last command above, the curves that have ids of 1, 2 or 3 and are also in bodies 4, 6 and 8 are
used in the command.

Cubit 13.2 User Documentation

148

Topology traversal is also valid between entity types. Therefore, the following commands would also be valid:

draw node in surface 3

draw surface in edge 362

draw hex in face in surface 2

draw node in hex in face in surface 2

draw edge in node in surface 2

3. Exclusion

Entity lists can be entered then filtered using the "except" identifier. This identifier and the ids following it apply
only to the immediately preceding entity list, and are taken to be the same entity type. For example, the
following entity lists are valid:

curve all except 2 4 6

curve 1 2 5 to 50 except 2 3 4

curve all except 2 3 4 in surface 2 to 10

curve in surface 3 except 2 (produces empty entity list!)

4. Group expansion

Groups in CUBIT can consist of any number of geometry entities, and the entities can be of different type
(vertex, curve, etc.). Operations on groups can be classified as operations on the group itself or operations on
all entities in the group. If a group identifier in a command is followed immediately by the `expand' qualifier, the
contents of the group(s) are substituted in place of the group identifier(s); otherwise the command is interpreted
as an operation on the group as a whole. If a group preceding the `expand' qualifier includes other groups, all
groups are expanded in a recursive fashion.

For example, consider group 1, which consists of surfaces 1, 2 and curve 1. Surfaces 1 and 2 are bounded by
curves 2, 3, 4 and 5. The commands in Table 1, illustrate the behavior of the `expand' qualifier.

Table 1. Parsing of group commands; Group 1 consists of Surfaces 1-2 and Curve 1; Surfaces 1 and 2 are
bounded by Curves 2-5.

Command Entity list produced

Curve in Group 1 Curve 1

Curve in group 1 expand Curves 1, 2, 3, 4, 5

The `expand' qualifier can be used anywhere a group command is used in an entity list; of course, commands which apply
only to groups will be meaningless if the group id is followed by the `expand' qualifier.

Precedence of "Except" and "In"

Several keywords take precedence over others, much the same as some operators have greater precedence in coding
languages. In the current implementation, the keyword "Except" takes precedence over other keywords, and serves to
separate the identifier list into two sections. Any identifiers following the "Except" keyword apply to the list of entities
excluded from the entities preceding the "Except". Table 2 shows the entity lists resulting from selected commands.

Table 2. Precedence of "Except" and "In" keywords; Group 1 consists of Surfaces 1-2 and Curve 1.

Command Entity list produced

Command Line Entity Specification

149

Curve all except 1 in Group 1 (All curves except curve 1)

Curve all except 2 3 4 in Surf 2 to 10 (All curves except 2, 3, 4)

In the first command, the entities to be excluded are the contents of the list "[Curve] 1 in Group 1", that is the intersection
of the lists "Curve 1" and "Curve in Group 1"; since the only curve in Group 1 is Curve 1, the excluded list consists of only
Curve 1. The remaining list, after removing the excluded list, is all curves except Curve 1.

In the second command, the excluded list consists of the intersection of the lists "Curve 2 3 4" and "Curve in Surf 2 to 10";
this intersection turns out to be just Curves 2, 3 and 4. The remaining list is all curves except those in the excluded list.

Placement in CUBIT Commands

In general, anywhere a range of entities is allowed, the new parsing capability can be used. However, there can be
exceptions to this general rule, because of ambiguities this syntax would produce. Currently, the only exception to this rule
is the command used to define a sideset for a surface with respect to an owning volume.

151

Entity Selection

 Command Line Entity Specification

 Extended Command Line Entity Specification

 Selecting Entities With the Mouse

CUBIT Entity specification is a means of selecting objects or groups of objects. Entities can be selected from the
command line using entity specification parameters, or directly in the graphics window using the mouse. This chapter
describes these methods of entity selection.

153

Environment Control

 Session Control

 Graphical User Interface

 Command Recording and Playback

 Graphics Window Control

 Entity Selection and Filtering

 Location, Direction, and Axis Specification

 Listing Information

The CUBIT user interface is designed to fill multiple meshing needs throughout the design to analysis process. The user
interface options include a full graphical user interface, a modern command line interface as well as no-graphics and
batch mode operation. This chapter covers the interface options as well as the use of journal files, control of the graphics,
a description of methods for obtaining model information, and an overview of the help facility.

155

Extended Command Line Entity Specification

In addition to basic entity specification, entities may be specified using an extended expression. An extended expression
identifies one or more entities using a set of entity criteria. These criteria describe properties of the entities one wishes to
operate upon.

Extended Parsing Syntax

The most common type of extended parsing expression is in the following format:

{Entity_Type} With {Criteria}

Entity_Type is the name of any type of entity that can be used in a command, such as Curve, Hex, or SideSet. Criteria is
a combination of entity properties (such as Length), operators (such as >=), keywords (such as Not), and values (such as
5.3) that can be evaluated to true or false for a given entity. Here are some examples:

curve with length <1

surface with is_meshed = false

node with x_coord > 10 And y_coord > 0

Keywords

These are the keyword defined by extended parsing

Keyword Description

All, To, Step, By, Except, In,
Expand

These keywords are used the same way as in basic entity specification. For
example:

draw surface all

draw surface 1 to 5 step 2 curve 1 to 3 in body 4 to 8 by 2

draw hex in face in surface 2

draw node in hex in face in surface 2 curve 1 2 5 to 50 except 2 3 4

Not

Not flips the logical sense of an expression - it changes true to false and false to
true. For example:

draw surface with not is_meshed

Of

The "of" operator is used to get an attribute value for a single entity, such as
"length of curve 5". Only attributes that return a single numeric value may be
used in an "of" expression. There must be only one entity specified after the "of"
operator, but it can be identified using any valid entity expression. An example of
a complete command which includes the "of" operator is:

list curve with length < length of curve 5 ids

And, Or

These logic operators determine how multiple criteria are combined.

draw surface with length > 3 or with is_meshed = false

< > <= >= = <>
These relational operators compare two expressions. You may use = or == for
"equals". <> means "not equal". For example:

Cubit 13.2 User Documentation

156

draw surface with x_max <= 3

draw volume with z_max <>12.3

+ - * /

These arithmetic operators work in the traditional manner.

draw surface with length * 3 + 1.2 > 10

()

Parentheses are used to group expressions and to override precedence. When
in doubt about precedence, use parentheses.

draw surface with length > 3 and (with is_meshed = false or x_min > 1)

Functions

The following functions are defined. Not all functions apply to all entities. If a function does not apply to a given entity, the
function returns 0 or false.

Keyword Description

ID the ID of an entity

Length The length of a curve or edge

Area The area of a surface.

Exterior_Angle

Works for curves with an exterior angle greater than (>), less than (<), or equal to
(=) a given angle in degrees. This is used if you want to do some operation, such
as refinement, on all the reentrant curves or curves with surfaces that form a
certain angle.

Is_Meshed Whether a geometric entity has been meshed or not

Is_Spline
Whether a geometric entity is defined using a NURBS representation. Otherwise
the entity has an analytic representation.

Is_Plane Whether a geometric surface is planar.

Is_Periodic Whether a geometric surface is periodic, such as a sphere or torus.

Is_Sheetbody
A geometric entity is a sheetbody if it is a collection of surfaces that do not form a
solid.

Element_Count
The number of elements owned by this geometric entity. Only elements of the
same dimension as the entity are counted (number of hexes in a volume, number
of faces on a surface, etc.)

Dimension The topological dimension of an entity (3 for volumes, 2 for surfaces, etc.).

X_Coord, Y_Coord, Z_Coord The x, y, or z coordinate of the point at the center of the entity's bounding box.

X_Min, Y_Min, Z_Min The x, y, or z coordinate of the minimum extent of the entity's bounding box

X_Max, Y_Max, Z_Max The x, y, or z coordinate of the maximum extent of the entity's bounding box

Is_Merged
Whether a geometry entity has a merge flag on. All geometric entities have one

Extended Command Line Entity Specification

157

set by default.

Is_Virtual
A flag that specifies whether an entity is virtual geometry. An entity is virtual if it
has at least one virtual (partition/composite) topology bridge.

Has_Virtual An entity "has_virtual" if it is virtual itself, or has at least one child virtual entity

Is_Real An entity "is_real" if it has at least one real (non-virtual) topology bridge.

Num_Parents
Used to specify geometry entities with a specified number of parent entities. May
be used to find "free curves" where num_parents=0 or non-manifold curves
where num_parents>2.

Precedence

For complicated expressions, which entities are referred to is influenced by the order in which portions of the expression
are evaluated. This order is determined by precedence. Operators with high precedence are evaluated before operators
with low precedence. You may always include parentheses to determine which sub-expressions are evaluated first. Here
all operators and keywords listed from high to low precedence. Items listed together have the same precedence and are
evaluated from left to right.

(,) Expand Not *, / +, - <, >, <=, >=, <>, = And, Or Except In Of With

Because of precedence, the following two expressions are identical:

curve with length + 2 * 2 > 10 and length <= 20 in my_group

expand(curve with (((length + (2*2)) > 10)and(length <= 20))) in (my_group expand)

159

Selecting Entities with the Mouse

The following discussion is applicable only to the command line version of CUBIT. See GUI Entity Selection for a
description of interactive entity selection with the Graphical User Interface.

Many of the commands in CUBIT require the specification of an entity on which the command operates. These entities are
usually specified using an object type and ID (see Entity Specification) or a name. The ID of a particular entity can be
found by turning labels on in the graphics and redisplaying; however, this can be cumbersome for complicated models.
CUBIT provides the capability to select with the mouse individual geometry or mesh entities. After being selected, the ID
of the entity is reported and the entity is highlighted in the scene. After selecting the entities, other actions can be
performed on the selection. The various options for selecting entities in CUBIT are described below, and are summarized
in Table 1:

Table 1. Picking and key press operations on the picked entities

Key Action

ctrl +
B1

Pick entity of the current picking type.

shift +
ctrl +

B1

Add picked entity of the current picking type to current picked entity list.

tab Query-pick; pick entity of current picking type that is below the last-picked entity.

n Lists what entities are currently selected.

l
Lists basic information about each selected entity. This is similar to entering a List command
for each selected entity.

g

Lists geometric information about the selection. As if the List Geometry command were issued
for each entity. If there are multiple entities selected, a geometric summary of all selected
entities is printed at the end, including information such as the total bounding box of the
selection.

i
Makes the current selection invisible. This only affects entities that can be made invisible from
the command line (i.e. geometric entities.)

s
Draws a graphical scale showing model size in the three coordinate axes. This is a toggle
action, so pressing the 's' key again in the graphics window will turn the scale off.

ctrl + z Zoom in on the current selection.

e Echo the ID of the selection to the command line.

a

Add the current selection to the picked group. Only geometry will be added to the group (not
mesh entities). If a selected entity is already in the picked group, it will not be added a second
time.

r
Remove the current selection from the picked group. If a selected entity was not found in the
picked group, this command will have no effect.

Cubit 13.2 User Documentation

160

ctrl + r Redisplays the model.

c Clear the picked group. The picked group will be empty after this command.

m Lists what entities are currently in the picked group.

d Display and select the entities in the picked group.

ctrl + d Draws the entity that is selected.

Details of selecting entities with a mouse are outlined in the following items:

 Entity Selection

 Query Selection

 Multiple Selected Entities

 Information about the Selection

 Picked Group

 Substituting the Selection into Commands

Entity Selection

Selecting entities typically involves two steps:

1. Specifying the type of entity to select

Clicking on the scene can be interpreted in more than one way. For example, clicking on a curve could be intended to
select the curve or a mesh edge owned by that curve. The type of entity the user intends to select is called the picking
type. In order for CUBIT to correctly interpret mouse clicks, the picking type must be indicated. This can be done in one of
two ways. The easiest way to change the picking type is to place the pointer in the graphics window and enter the
dimension of the desired picking type and an optional modifier key. The dimension usually corresponds to the dimension
of the objects being picked:

Table 2. Picking Modes in Graphics Window

Number Default pick Number +shift pick

0 vertices nodes

1 curves edges

2 surfaces all 2D elements

3 volumes all 3D elements

4 bodies

If a Shift modifier key is held while typing the dimension, the picking type is set to the mesh entity of corresponding
dimension, otherwise the geometry entity of that dimension is set as the picking type. For example, typing 2 while the
pointer is in the graphics window sets the picking type so that geometric surfaces are picked; typing Shift-1 sets the
picking type so that mesh edges are picked. To differentiate between picking "tris" or "quads" use "pick face" or "pick tri"

The picking type can also be set using the command

Pick <entity_type>

Selecting Entities with the Mouse

161

where entity_type is one of the following: Body , Volume , Surface , Curve , Vertex , Hex , Tet , Face , Tri , Edge , Node ,
or DicerSheet .

2. Selecting the entities

To select an object, hold down the control key and click on the entity (this command can be mapped to a different button
and modifiers, as described in the section on Mouse-Based View Navigation). Clicking on an entity in this manner will first
de-select any previously selected entities, and will then select the entity of the correct type closest to the point clicked.
The new selection will be highlighted and its name will be printed in the command window.

Query Selection

If the highlighted entity is not the object you intended to selected, press the Tab key to move to the next closest entity.
You can continue to press tab to loop through all possible selections that are reasonably close to the point where you
clicked. Shift-Tab will loop backwards through the same entities.

Multiple Selected Entities

To select an additional entity, without first clearing the current selection, hold down the shift and control keys while clicking
on an object. You can select as many objects as you would like. By changing the picking type between selections, more
than one type of entity may be selected at a time. When picking multiple entities, each pick action acts as a toggle; if the
entity is already picked, it is "unpicked", or taken out of the picked entities list.

Information About the Selection

When an entity is selected, its name, entity type, and ID are printed in the command window. There are several other
actions which can then be performed on the picked entity list. These actions are initiated by pressing a key while the
pointer is in the graphics window. Table 1 summarizes the actions which operate on the selected entities.

Picked Group

There is a special group whose contents can be altered using picking. This group is named picked , and is automatically
created by CUBIT. Other than its relationship to interactive picking, it is identical to other groups and can be operated on
from the command line. Like other groups, both geometric and mesh entities can be held in the picked group. Table 1 lists
the graphics window key presses used with the picked group.

Note: It is important to distinguish between the current selection and the picked group contents. Clicking on a new entity
will select that entity, but will not add it to the picked group. De-selecting an entity will not remove an entity from the picked
group.

Substituting Selection into Other Commands

There are three ways to use mouse-based selection to specify entities in commands.

1. The Selection Keyword

You may refer to all currently selected entities by using the word selection in a command; the picked type and ID numbers
of all selected entities will be substituted directly for selection . For example, if Volume 1 and Curve 5 are currently
selected, typing

Color selection Blue

is identical to typing

Color Volume 1 Curve 5 Blue

Note that the selection keyword is case sensitive, and must be entered as all lowercase letters.

2. Echoing the ID of the Selection

Typing an e into a graphics window will cause the ID of each selected entity to be added to the command line at the
current insertion point. This is a convenient way to use entities of which you don't already know the name or ID.

Cubit 13.2 User Documentation

162

As an added convenience, the picking type can be set based on the last word on the command line using the ` key. Note
that this is not the apostrophe key, but rather the left tick mark, usually found at the upper-left corner of the keyboard on
the same key as the tilde (~). For example, a convenient way to set the meshing scheme of a cylinder to sweep would be
as follows:

Volume (hit `, select cylinder, hit e) Scheme Sweep Source Surface (hit `, select endcap, hit e) Target
(select other endcap, hit e)

The result will be something similar to

Volume 1 Scheme Sweep Source Surface 1 Target 2

Notice that you must use the word Surface in the command, or ` will not select the correct picking type.

3. Using the Picked Group in Commands

Like other groups, the picked group may be used in commands by referring to it by name. The name of the picked group
is picked. For example, if the contents of the picked group are Volume 1 and Volume 2, the command

Draw picked

is identical to

Draw Volume 1 Volume 2

Note that picked is case sensitive, and must be entered as all lowercase letters.

163

Specifying a Location

Some commands require a specified location or point (such as create curve spline) for the command. A location is
basically an x-y-z position in the model. The following options determine a location specification:

 [Position] <xval yval zval>

 Last

 [At] {Node|Vertex} <id_list>

 [On] Curve <id_list> [location on curve options]

 [On] Surface <id_list> [Close_To | At Location {options} | CENTER]

 [On] Plane <options> [Close_To | At Location {options}]

 Center Curve <id_list>

 Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options} [Direction {options}] [Direction
{options}]

 Fire Ray Location {options} Direction {options} At {Body|Volume|Surface|Curve|Vertex} <ids> [Maximum Hits
<val>] [Ray Radius <val>]

 Between { Location <options> Location <options>} | { Location <options> Project {Curve|Surface} <id> } [Stop]
[Fraction <val>] }

 [Move [all] {<xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} Distance <val>}]

 [Swing [all] [About] Axis {options} Angle <ang>]

 Multiple Location Specification

Position (XYZ values)

[Position] <xval yval zval>

The most basic way to specify a location is to just give the xyz values of the location. In this case the following two
commands both draw a location at the coordinates (1, 2, 3), as the Position keyword is optional:

draw location position 1 2 3
draw location 1 2 3

Last Location Used in a Command

Last

The last option recalls the last location used in a command. For example, if the following command is entered after the
above position commands a location would be drawn at the position (1, 2, 3).

draw location last

Last locations do not carry over from CUBIT session to CUBIT session. The last location defaults to (0, 0, 0) if no location
has been used during the session.

Node or Vertex

[At] {Node|Vertex} <id_list>

Referring to a node or vertex simply returns the coordinates of that node or vertex. The command can also handle
multiple locations where multiple locations are needed to complete the command string. The following draws a location at
the coordinates of Vertex 5:

draw location vertex 5

Cubit 13.2 User Documentation

164

On a Curve

Various options are available to specify a location on a curve. See the section Specifying a Location On a Curve for
details.

On a Surface

[On] Surface <id_list> [Close_To | At Location {options} | CENTER]

If a surface is used to specify a location without other options, the geometrical center of the surface is found (the center
keyword is optional - the default). Otherwise, you can specify another general location and that location is projected to the
surface. For example, the following command will draw the location that is position (5,0,0) projected to surface 1:

draw location on surface 1 location 5 0 0

Any valid location options listed on this page can be used to specify the location that is projected to the surface.

On a Plane

[On] Plane <options> [Close_To | At Location {options}]

A location can be defined at the closest point on a plane to a location. See Specifying a Plane for plane options.

Center

Center Curve <id_list>

Finds the center of an arc - an error is returned if the curve is not an arc.

Extrema

Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options} [Direction {options}]
[Direction {options}]

The extrema option returns the location of the maximum value, on the specified entity or group, in the specified direction.
For example, the following places a vertex on a surface at the point of maximum y-axis value.

create vertex location extrema surf 1 direction y

Fire Ray

The fire ray command allows a user to identify a location, or set of locations, on an object by firing a ray at the object and
determining the intersections. A ray can be fired at a list of bodies, volumes, surfaces, curves, or vertices. The fire ray
command is:

Fire Ray Location {options} Direction {options} At {Body|Volume|Surface|Curve|Vertex} <ids>
[Maximum Hits <val>] [Ray Radius <val>]

The location options are described on this page. The direction options are described under Specifying a Direction. The
user can specify the maximum number of hits that he wishes to receive back from the command. If this value is omitted,
the command will return all intersections found. When firing a ray at a curve, a ray radius must be used. The ray radius is
the distance from the curve the ray must be to be considered a "hit." If no ray radius is used, the geometry engine default
is used.

Between

Between {Location <options> Location <options> } | {Location <options> Project {Curve|Surface}
<range>} [Stop] [Fraction <val>]}

The between option finds a location that is between two locations or a location and an entity. An optional fraction can be
given to specify the fractional distance from the first location to the second location or entity. For example, the following
will draw a location at (5, 0, 0):

Specifying a Location

165

draw location between location 0 0 0 location 10 0 0

The following will draw a location at (2.5, 0, 0) - 25% of the distance from (0, 0, 0) to (10, 0, 0):

draw location between location 0 0 0 location 10 0 0 fraction .25

The second item can be an entity:

draw location between location 0 0 0 vertex 2
draw location between location 0 0 0 surface 1

In the second case, location (0, 0, 0) is projected to surface 1, then the location that is between (0, 0, 0) and the projected
location is found.

Of course, any valid location can be used in the command. In the following example a location at the top center of the
brick is found:

brick x 10
draw location between location bet vert 3 vert 2
location bet vert 8 vert 5

The first location is between vertices 3 and 2, and the second location is between vertices 8 and 5.

Note: you can "swing" a location about an axis, "rotate" a direction about another direction, "revolve" an axis about
another axis and "spin" a plane about an axis. The only reason Cubit needs to use different keywords for each entity type
is because the Cubit command language does not support expressions (as in using parentheses). The keyword stop is
also used in the location/direction/axis/plane parsing as a partial workaround to this limitation. Using this stop keyword will
aid in parsing out extended location specifications. Insert a stop after the first location to let the parser know that where
the specifications begin and end.

Move

Move [All] { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} Distance <val> }

Any location can be optionally moved either a xyz distance or a certain distance in a given direction. As many moves as
desired can be strung together. For example, the following will return a location at (5, 0, 0):

draw location 0 0 0 move 5 0 0

These examples add another move that basically moves the location (5, 0, 0) in a direction 45 degrees up and to the right
a distance of 10 (all three commands are equivalent - see sections on directions and rotations):

draw location 0 0 0 move 5 0 0 move {10*sind(45)} {10*sind(45)} 0
draw location 0 0 0 move 5 0 0 move direction 1 1 0 distance 10
draw location 0 0 0 move 5 0 0 move direction 1 0 0 rotate about 0 0 1 angle 45 dist 10

Swing

Swing [All] [About] Axis {options} Angle <ang>

Any location can be "swung" (rotated) about an axis by a certain angle. (See the section on specifying an axis for the axis
syntax). As with moves, multiple swings can be strung together. The following example rotates the location (2.5, 5, 5)
thirty degrees about an axis defined by Curve 11. Note that the right-hand rule is used to determine the direction of the
swing about the axis.

draw location 2.5 5 5 swing about axis curve 11 angle 30

Cubit 13.2 User Documentation

166

Figure 1 - Swinging a Location

Multiple Location Specification

Location {options} Location {options}...

Multiple location specifications can be used in a single command. For example, the following command uses several
locations to create a spline curve at points (0,0,0), (1,2,3), (4,5,6), and (7,8,9).

create curve spline location 0 0 0 location 1 2 3 location 4 5 6 location 7 8 9

Previewing a Location

Sometimes it is advantageous to preview a location before using it in a command. A location can be previewed with the
Draw command. All of the options that can be used to specify locations in a command can be used to preview locations
as well. See above for a description of these options. The command syntax is:

Draw Location {options}

167

Specifying a Location on a Curve

Some commands require you to specify a location on a curve (i.e., webcutting with a plane normal to a curve). The
following are the options for specifying a location (or locations in the case of the segment option) on a curve:

 {MIDPOINT|Start|End}

 Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End]

 Distance <val> [From {Vertex|Curve|Surface} <id> | Start | End]

 {{Close_To|At} Location {options} | Position <xval><yval><zval> | {Node|Vertex} <id>}

 Extrema [Direction] {options} [Direction {options}] [Direction {options}]

 Segment <num_segs>

 Crossing {Curve|Surface} <id_list> [Bounded|Near]}

 Previewing a Location

Start, Midpoint, or End

{ MIDPOINT | Start | End |

These options simply specify the location that is the midpoint, start or end point of a curve. By default, the midpoint is the
understood location unless another location is specified.

Fraction

Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End] |

The fraction option simply finds the location that is a fractional distance along the curve. By default, the fraction references
the start of the curve; however, you can optionally specify which vertex to reference from.

Distance

Distance <d> [From {Vertex|Curve|Surface} <id> | Start | End] |

The distance option not only can find a location that is a certain distance along the curve from the start or end of the
curve, but can also find a location (or locations if there is more than one solution) on a curve that is a specified distance
from another curve or a surface. If the From Curve option is used both curves must lie in the same plane.

draw location on curve 13 distance 7 from curve 2

Figure 1 - Location on a Curve a Distance from Another Curve

Cubit 13.2 User Documentation

168

{Close_To|At} Location

{{Close_To|At} Location {options} | Position <xval><yval><zval> |{Node|Vertex} <id>} |

These options take a location closest to the location on the curve.

Extrema

Extrema [Direction] {options} [Direction {options}] [Direction {options}]

The extrema option finds the maximum value location along a curve in a specified direction. For example:

create vertex location on curve 1 extrema ny

Creates a vertex on curve 1 at the location where the y axis value of the curve is at a minimum.

Segment

Segment <num_segs>

The segment option finds locations spaced evenly along the curve such as to break the curve into equal length
"segments" (of course the curve is not modified). You must specify a minimum of two segments (if two segments were
specified a location would be found at the center of the curve). The following example results in 4 locations:

draw location on curve 1 segment 5

create vertex on curve 1 segment 5

Figure 2 - Five Segments on a Curve

Crossing

Crossing {Curve|Surface} <id_list> [Bounded|Near]}

The crossing option finds locations at the intersection of the curve and another curve or surface. By default, the curve(s)
and surface are extended to infinity and the intersections are calculated; if the bounded option is specified only
intersections that lie on the bounded entities will be returned. The near option is valid only for two linear curves. If near is
specified the nearest location between the two linear curves will be returned.

Previewing a Location on a Curve

A location on a curve can be previewed with the Draw command. All of the options that can be used for specifying a
location on a curve can be used to preview a location on a curve. See above for a description of these options. The
command syntax is:

Draw Location On Curve <curve id> {options}

169

Specifying a Direction

Some commands require a specified a direction or vector for the command. A direction is basically a xyz vector in the
model. The following options determine a direction specification:

 [Vector] <xval yval zval>

 Last

 X|Y|Z|Nx|Ny|Nz

 [On] | [Tangent] [At] Curve <id> {location on curve options}

 [On] | [Normal] [At] Surface <id> [Location {options}]

 [From] { Location {options} | {Node|Vertex} <id> }[Project] {Location {options} | [Entity]
{Node|Vertex|Curve|Surface} <id> }

 [Rotate {options}]

 [Cross [With] Direction {options}]

 [Reverse]

Vector (XYZ values)

[Vector] <xval yval zval>

The most basic way to specify a direction is to just give the vector x-y-z components of the direction. The given vector
need not be a unit vector. The following three commands simply draw a direction in the x-direction (1, 0, 0) as the Vector
keyword is optional and unit vectors are not required:

draw direction vector 1 0 0
draw direction 1 0 0
draw direction 10 0 0

Last Direction Used

Last

The last option recalls the last direction used in a command. For example, if the following command is entered after the
above vector commands a direction location would be drawn in the x-direction (1, 0, 0).

draw direction last

Last directions do not carry over from CUBIT session to CUBIT session. The last direction defaults to (1, 0, 0) if no
direction has been used during the session.

Positive or Negative X,Y,Z Direction Vectors

X|Y|Z|Nx|Ny|Nz

The x|y|z|nx|ny|nz options assign the x direction, y direction, z direction, negative x direction, negative y direction and
negative z direction respectively.

On Curve Tangent

[On] | [Tangent] [At] Curve <id> {location on curve options}

The curve option simply finds a tangent vector on a curve. Note that the on, tangent and at keywords are optional, as
well as the location on the curve. If no location is specified, the tangent at the start vertex of the curve is found. See the
section above, Specifying a Location on a Curve, for details on how to specify where along the curve the tangent vector is
found.

Cubit 13.2 User Documentation

170

draw direction curve 1
draw direction on curve 1
draw direction tangent at curve 1
draw direction tangent at curve 1 distance 3
draw direction tangent at curve 1 fraction .5
draw direction tangent at curve 1 distance 2 reverse

Figure 1 - Tangents to a Curve

On Surface Normal

[On] | [Normal] [At] Surface <id> [Location {options}]

The surface option simply finds a normal vector on a surface. Note that the "on", "normal" and "at" keywords are optional,
as well as the location on the surface. If no location is specified, the normal vector at the center of the surface is found. If
a location is specified, the location is projected to the surface, then the normal vector is found.

draw direction on surface 1
draw direction on surface 1 location 1 2 0

From Location

[From] {Location {options} | Node|Vertex <id>} [Project] {Location {options} | [Entity]
{Node|Vertex|Curve|Surface} <id>}

The from location option finds a direction that is from one location to another or from a location to an entity. If the second
specification is an entity, the first location is projected to the entity to find the direction.

draw direction from vertex 1 vertex 2
draw direction from location on curve 1 fraction .5 surface 3

Note that when using an entity for the second specification, the Project and Entity keywords are generally optional.
However, it is sometimes necessary to remove ambiguity from the previous location specification. For example, the
following will not parse correctly:

draw direction location on curve 1 distance 2 surface 3

In this case, the location on the curve is parsed as a distance 2.0 from surface 3. Instead, the desired behavior is to find
the location on curve 1 as a distance of 2.0 along the curve from the start of the curve, and project it to surface 3 to find
the direction. The following commands (all equivalent) achieve this behavior:

draw direction location on curve 1 distance 2 project surface 3
draw direction location on curve 1 distance 2 entity surface 3
draw direction location on curve 1 distance 2 project entity surface 3

Rotate

[Rotate {options}]

The rotate option allows you to rotate the direction about another vector. You can string together as many rotations as
necessary. For example:

draw direction 1 0 0 rotate about z 135 rotate about curve 1 angle 50

Options that can be used with rotate are as follows:

Specifying a Direction

171

{Ax|X|Ay|Y|Az|Z [Angle] <angle>} | { {[About] | Towards} Direction {options} Angle <val> } [Rotate
(options)] [Origin (location)]

Ax, Ay, Az (or X,Y,Z) angles can be entered in any order. The optional specification of another rotate keyword in the
options indicated that multiple nested rotations are permitted.

Cross

[Cross [With] Direction {options}]

The cross option allows you to find the vector cross product of the direction with another direction.

Reverse

[Reverse]

This keyword simply reverses the direction specification.

Previewing a Direction

Sometimes it is helpful to preview a direction before using it in a command. A direction may be previewed using the Draw
command. The direction options are described above. See Specifying a Location for a list of location options.

Draw Direction {direction_options} [Location (location_options)]

173

Specifying an Axis

Some commands require a specified axis (such as webcut with a cylinder) and it is sometimes advantageous to view an
axis before modifying geometry. An axis is simply a vector with a specified origin. The following options determine an axis
specification:

 Last

 Specify a direction and a location

 Revolve an axis about an axis

Last

Last

The last option recalls the last axis used in an axis command. The last axis does not carry over from CUBIT session to
CUBIT session.

Specify an origin and a vector

{Direction {options} [Origin [Location] {options}] [Length <val>] [Angle <val>]}

To specify an axis simply specify a vector (a direction) and an origin (a location). Notice that the command requires the
axis direction first because the origin defaults to 0 0 0 when not specified. An example of specifying an axis to draw a
location using the swing command is as follows:

draw location 1 0 0 swing about axis direction z ang 45

Figure 1 - Swinging a point about the z-axis

The location 1 0 0 was swung 45 degrees about an axis defined by a vector in the z direction and an origin at 0 0 0.

Revolve an axis about an axis

[Axis {options} Revolve [About] Axis {options} Angle <val>]

To revolve one axis around another use the revolve keyword. The following example revolves the first axis (defined by the
y-axis and origin) around the second axis (defined by the z-axis and origin) by 45 degrees and draws the result.

draw axis direction y revolve axis direction z angle 45

Cubit 13.2 User Documentation

174

Figure 2 - Revolving an axis about another axis

Previewing an Axis

Sometimes it is helpful to preview an axis before using it in a command. An axis may be previewed using the Draw
command. The options for previewing an axis are the same as the ones described above.

Draw Axis {options}

175

Specifying a Plane

Some commands require a specified plane (such as sweep curve target) for the command. The following options
determine a plane specification:

 {Location|Vertex|Node} <origin> Direction <normal>

 {Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on plane>

 {Location|Vertex|Node} <2 locations> Direction <vector on the plane>

 {Location|Vertex|Node} <3 locations>

 Surface <id> [at location <loc>]

 [Normal To] Curve <id> [loc on curve options]

 Direction <Normal> Coefficient <val>

 Arc Curve <id>

 Linear Curve <id> <id>

 X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy|Yx

 Last

The following options apply to all of the plane specifications listed above:

 [Offset <val>]

 [Move { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} [Distance <val>]]

 [[To] Location {options}]

 [Spin [About] Axis {options} Angle <ang>]]

Location and Normal Vector

{Location|Vertex|Node} <origin> Direction <normal>

The first way to specify a plane is to specify a starting point and a direction vector:

draw plane location 1 2 3 direction 0 1 1
draw plane vertex 1 direction tangent at curve 1

Figure 1. Specifying a plane with a location and surface normal

To see the options for location specification, see Specifying a Location. Direction options can be found at Specifying a
Direction.

Location and Two Vectors on the Plane

{Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on plane>

It is also possible to select an origin point and 2 direction vectors on the plane.

Cubit 13.2 User Documentation

176

.

Figure 2. Specifying a plane with a point and 2 in-plane vectors

Two Locations and Vector on the Plane

{Location|Vertex|Node} <2 locations> Direction <vector on the plane>

You can also specify 2 locations and 1 direction on the plane to define the plane.

draw plane vertex 1 2 direction 0 1 1

Figure 3. Specifying 2 locations and 1 direction on the plane

Three Points on the Plane

{Location|Vertex|Node} <3 locations>

A plane can be defined by three locations, vertices, or nodes. The locations are specified using Location Specification.

draw plane vertex 1 2 3
draw plane vertex 1 2 location 3 4 5

Specifying a Plane

177

Figure 4. A plane specified by three points

Plane defined by a Surface

Surface <id> [At Location <loc>]

The surface option uses and existing surface to define the plane. If it is not a planar surface, the optional location specifier
can be used to find the tangent plane of a specific point on the surface.

draw plane surface 1 at location 4 0 0

Figure 5. Specifying a Tangent plane to a Surface

Plane Normal to a Curve

[Normal To] Curve <id> [loc on curve options]

Cubit 13.2 User Documentation

178

The Normal to Curve option allows you to define a plane by using an existing curve. The direction of the curve will define
the surface normal of the new plane. The optional location argument specifies which point to use on the curve if it is not a
straight curve. If no location is specified the plane will originate at the midpoint of the curve. See Specifying a Location on
a Curve for more information on location options.

brick x 10
cylinder radius 3 z 12
subtract body 2 from 1
webcut body 1 xplane
draw plane normal to curve 30

Figure 6. Draw Plane Normal to Curve

Plane Defined by a Non-linear curve

Arc Curve <id>

A plane can be defined by a single curve, provided that curve is not linear.

cylinder height 12 radius 3
draw plane arc curve 2

Plane Defined by a two linear curves

Linear Curve <id> <id>

A plane can be defined by a two linear curves, provided that the curves are not co-linear.

brick x 10
draw plane linear curve 2 3

Normal Vector and Coefficient

Direction <Normal> Coefficient <val>

The direction and coefficient option allows you to specify a plane based on a vector and an offset from the origin. The
Coefficient argument specifies how far to offset the plane from the origin

draw plane direction 1 2 3 coefficient 3

Specifying a Plane

179

Coordinate Plane

X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy|Yx

A plane can be defined from any coordinate plane or combination thereof. The coordinate planes will pass through the
origin unless optional specifiers are included.

draw plane xplane
webcut volume 1 plane xz

Last Location Used

Last

The last option will return the plane most recently used in a command. Last locations do not carry over from CUBIT
session to CUBIT session. The last location defaults to (0, 0, 0) if no location has been used during the session.

The following options apply to all of the plane specification methods described above.

 [Offset <val>]

 [Move {<xval yval zval>| {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} [Distance <val>]]

 [[To] Location {options}]

 [Spin [About] Axis {options} Angle <ang>]]

A offset value will offset the plane in the direction of the surface normal.

The move option will displace the plane in the specified directions by the specified distance. The direction options are
outlined on Specifying a Direction.

The location option will move the plane to a specified location without rotating it. See Specifying a Location for location
options.

The spin option will rotate the plane around an axis. See Specifying an Axis for axis options.

Previewing a Plane

The ability to preview a plane prior to creating the plane or using it in a command is possible with the following
commands:

Draw Plane (options) [Graphics | {[Intersecting] {Body|Volume} <id_range>] [[Extended] {Percentage|Absolute} <val>]}]
[Color 'color_name']

The options for specifying a plane are described above in the section on Plane Specification. By default, the commands
draw the plane just large enough to intersect the bounding box of the entire model with minimum surface area. Optionally,
you can give a list of bodies to intersect for this calculation. You can also extend the size of the surface by either a
percentage distance or an absolute distance of the minimum area size. The default color is blue, but you can specify a
different one. See the Appendix of the CUBIT Users Guide for available colors in CUBIT.

Preview a Cylindrical Plane

The ability to preview a cylindrical plane is possible with the following command:

Draw Cylinder Radius <val> Axis {x|y|z|Vertex <id_1> Vertex <id_2> | <xyz values>} [Center <x_val> <y_val> <z_val>]
[[Intersecting] Body <id_range>] [Extended Percentage|Absolute <val>] [Color 'color_name']

The cylinder is defined by a radius and the cylinder axis. The axis is specified as a line corresponding to a coordinate axis,
the normal to a specified surface, two arbitrary points, or an arbitrary point and the origin. The center point through which
the cylinder axis passes can also be specified.

By default, the commands draw the cylinder just large enough to just intersect the bounding box of the entire model.
Optionally, you can give a list of bodies to intersect for this calculation. You can also extend the length of the cylinder by
either a percentage distance or an absolute distance of the cylinder length. The default color is blue, but you can specify a
different one. See the Appendix of the CUBIT Users Guide for available colors in CUBIT.

Cubit 13.2 User Documentation

180

181

Drawing a Location, Direction, or Axis

Some commands require you to specify a location on a curve (i.e., webcutting with a plane normal to a curve). This
location can be previewed with the following options:

1. A fraction along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
2. A distance along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
3. An xyz position that is moved to the closest point on the given curve.
4. The position of a vertex that is moved to the closest point on the given curve.

Draw Location On Curve <curve id> {Fraction <f> | Distance <d> | Position <xval><yval><zval> |
Close_To Vertex <vertex_id>} [[From] Vertex <vertex_id> (optional for 'Fraction' & 'Distance')]

Some commands require a specified axis (such as webcut with a cylinder) and it is sometimes advantageous to view an
axis before modifying geometry. To draw a preview of an axis use the following command:

Draw Axis {options}

Some commands require a specified location or point (such as create curve spline) and it is sometimes advantages to
view a location before modifying or creating geometry. To draw a preview of a location use the following command:

Draw Location {options}

183

List Model Summary

The following commands print identical summaries of the model: the number of entities of each geometric, mesh, and
special type

List Model

List Totals

The following output is generated from the list model command.

CUBIT> list model

Model Entity Totals:
 Geometric Entities:
 0 assemblies
 0 parts
 2 groups
 1 bodies
 1 volumes
 6 surfaces
 12 curves
 8 vertices
 Mesh Entities:
 6000 hexes
 0 pyramids
 0 tets
 7876 faces
 0 tris
 9854 edges
 7161 nodes
 Special Entities:
 1 element blocks
 1 sidesets
 1 nodesets

Journaled Command: list model

185

List Geometry

The following commands list information about the geometry of the model.

List Names [Group|Body|Volume|Surface|Curve|Vertex|All]

List {Group|Body|Volume|Surface|Curve|Vertex} <range> [Ids]

List {geom_list} [Geometry|Mesh [Detail]]

List {Group|Body|Volume|Surface|Curve|Vertex} <range> {X|Y|Z}

The first command lists the names in use, and the entity type and id corresponding to each name. Specifying all lists
names for all types; other options list names for a specific entity type. The names for an individual entity can be obtained
by listing just that entity. Sample output from the list names surface command is shown below. This output shows that, for
example, Surface 2 has the name ` BackSurface '.

______Name______ __Type__ Id _Propagated_
 BackSurface Surface 2 No
 BottomSurface Surface 3 No
 FrontSurface Surface 1 No
 LeftSurface Surface 4 No
 RightSurface Surface 5 No
 TopSurface Surface 6 No

List Names Example

The second command provides information on the number of entities in the model and their identification numbers. If a
range is given then detailed information is given on each entity in that range, unless the ids option is also given. If the ids
option is used, just a list of ids is printed. This list can be very useful for large models in which several geometry
decomposition operations have performed. Sample output from the list surface command is shown below.

CUBIT> list surface ids
The 6 surface ids are 1 to 6.

CUBIT> list surf ids
The 108 surface ids are 192 to 266, 268 to 271, 273 to 301.

List Surface [range] Ids' Examples

The <range> can be very general using the general entity parsing syntax. Using a <range> gives a brief synopsis of the
local connectivity of the model, e.g. one can list the ids of the surfaces containing vertex 2; as shown in the listing below..
An intermediately detailed synopsis can be obtained by placing the range of entities in a group, then listing the group.

CUBIT> list surface in vertex 2 ids
The 3 entity ids are 1, 5, 6.

CUBIT> group "v2_surfs" equals surface in vertex 2
CUBIT> list v2_surfs Group Entity 'v2_surfs' (Id = 3)
It owns/encloses 3 entities: 3 surfaces.
Owned Entities: Mesh Scheme Interval: Edge
_____Name____ Type______Id +is meshed Count Size
FrontSurface Surface 1 map+ 1 H 0.1
 TopSurface Surface 6 map+ 1 H 0.1
RightSurface Surface 5 map+ 1 H 0.1

Using 'List' for Querying Connectivity.

The third command provides detailed information for each of the specific entities. This information includes the entity's
name and id, its meshing scheme and how that scheme was selected, whether it is meshed and other meshing
parameters such as smooth scheme, interval size and count. The entity's connectivity is summarized by a table of the
entity's subentities and a list of the entity's superentities. Also, the nodesets, sidesets, blocks, and groups containing the
entity are listed.

Cubit 13.2 User Documentation

186

Specifying geometry will additionally list the extent of the entity's geometric bounding box, the geometric size of the entity,
and depending on entity type, other information such as surface normal. See also the list {entities} x command below. If
multiple volumes, surfaces, or curves are selected, it will list the total volume, area, or length of all entities, and the total
geometric bounding box. If multiple volumes are selected, the centroid listed will be the composite centroid of the all of the
volumes.

Specifying mesh will additionally list the number of mesh entities of each type interior to the entity and on bounding
subentities. Mesh detail will list the ids of the mesh entities as well, following the format of the list ids command above.

The fourth command lists the entities sorted by either the x, y, or z coordinate of their geometric center. For example, in a
large, basically cylindrical model centered around z-axis, it is useful to list the surfaces of a volume sorted by z to identify
the source and target sweeping surfaces.

187

List Mesh

The following commands list mesh entity information.

List {Hex|Face|Edge|Node} <id_range>

List {Hex|Face|Edge|Node} <id_range> IDs

For both of these commands, the range can be very general, following the general entity parsing syntax. The first
command provides detailed information. For an entity, the information includes its id, owning geometry, subentities and
superentities. For a hex, the Exodus Id is also listed. For a node, its coordinates are listed. The second command just lists
the entity ids, and is usually used in conjunction with complex ranges.

189

List Special Entities

List {special_type} <range>

Special entities include (element) blocks, sidesets and nodesets (representing boundary conditions). Like the list
geometry and list mesh commands, if no range is specified then the number of entities of the given type is summarized.
Otherwise, listing a special entity prints the mesh and geometry it contains.

(Some special entities are of interest mainly to developers and are not described here, e.g. whisker sheets, and whisker
hexes.)

191

List Cubit Environment

The user may list information about the current CUBIT environment such as message output settings, memory usage, and
graphics settings.

Message Output Settings

There are several major categories of CUBIT messages.

 Info (Information) messages tell the user about normal events, such as the id of a newly created body, or the
completion of a meshing algorithm.

 Warning messages signal unusual events that are potential problems.

 Error messages signal either user error, such as syntax errors, or the failure of some operation, such as the
failure to mesh a surface.

 Echo messages tell the user what was journaled.

 Debug messages tell developers about algorithm progress. There are many types of Debug messages, each
one concentrating on a different aspect of CUBIT.

By default, Info, Warning, Error, and Echo messages are printed, and Debug messages are not printed. Information,
Warning and Debug message printing can be turned on or off (or toggled) with a set command; error messages are
always printed. Debugging output can be redirected to a file. Current message printing settings can be listed.

List {Echo|Info|Errors|Warning|Debug }

Set {Echo|Info|Warning} [On|Off]

[Set] Debug <index> [On|Off]

[Set] Debug <index> File <'filename'>

[Set] Debug <index> Terminal

Message flags can also be set using command line options, e.g. -warning={on|off} and -information={on|off}. Debug
flags can be set on with -debug=<setting>, where <setting> is a comma-separated list of integers or ranges of integers
denoting which flags to turn on. E.g. to set debug flags 1, 3, and 8 to 10 on, the syntax is -debug=1,3,8-10.

In addition to the major categories, there are some special purpose output settings.

[Set] Logging {Off|On File <'filename'> [Resume]}

List Logging

If logging is enabled, all echo, info, warning, and error messages will be output both to the terminal and to the logging file.
The resume option will append to the logfile, if it exists, instead of writing over it. If the logfile doesn't already exist, it will
be created.

List Journal Title "<title_string>"

The List Journal command lists which types of CUBIT commands will be journaled and the file to which the journaled
commands are being written.

List Title

The List Title command will list the title to be written to the Exodus file. To assign a title to an exodus file, use the Title
command.

List Default Block

Set Default Block {ON|off}

Cubit 13.2 User Documentation

192

The List Default Block command lists which type of geometric entities for which blocks will automatically be generated at
export if no other blocks have been specified. The Set Default Block command will toggle whether these default blocks
are written, or not, during the export operation when no other blocks have been specified.

List Settings

The List Settings command lists the value of all the message flags, journal file and echo settings, as well as additional
information. The first section lists a short description of each debug flag and its current setting. Next come the other
message settings, followed by some flags affecting algorithm behavior.

Sample output

CUBIT> list settings

Debug Flag Settings (flag number, setting, output to, description):

 1 OFF terminal Debug Graphics toggle for some debug

options.

 2 OFF terminal Whisker weaving information

 3 OFF terminal Timing information for 3D Meshing routines.

 4 OFF terminal Graphics Debugging (DrawingTool)

 5 OFF terminal FastQ debugging

 6 OFF terminal Submapping graphics debugging

 7 OFF terminal Knife progress whisker weaving information

 8 OFF terminal Mapping Face debug / Linear Programming

debug

 9 OFF terminal Paver Debugging

.

.

.

echo = On

info = On

journal = On

journal graphics = Off

journal names = On

journal aprepro = On

journal file = 'cubit11.jou'

warning = On

logging = Off

List Cubit Environment

193

recording = Off

keep invalid mesh = Off

default names = Off

default block = Volumes

catch interrupt = On

name replacement character = '_', suffix character = '@'

Matching Intervals is fast, TRUE;

multiple curves will be fixed per iteration.

Note in rare cases 'slow', FALSE, may produce better meshes.

Match Intervals rounding is FALSE;

intervals will be rounded towards the user-specified intervals.

Graphical Display Information

List View

List view prints the current graphics view and mode parameters; See Graphics Window .

Memory Usage Information

Users are encouraged to use Unix commands such as `top' to check total CUBIT memory use. Developers may check
internal memory usage with the following command:

List Memory [`<object type>']

Without an object type, the command prints memory use for all types of objects.

195

ACIS Geometry Kernel

ACIS is a proprietary format developed by Spatial Technologies. CUBIT incorporates the ACIS third party libraries directly
within the program. The ACIS third party libraries are used extensively within CUBIT to import, export and maintain the
underlying geometric representations of the solid model for geometry decomposition and meshing. There are many ways
to get geometry into the ACIS format. ACIS files can be exported directly from several commercial CAD packages,
including SolidWorks, AutoCAD, and HP PE/SolidDesigner. Third party ACIS translators are also available for converting
from native formats such as Pro Engineer. CUBIT also uses the ACIS libraries for importing IGES and STEP format files.

Importing and creating geometry using the ACIS geometric modeling kernel currently provides the widest set of
capabilities within CUBIT. All geometry creation and modification tools have been designed to work directly on the ACIS
representation of the model.

http://www.spatial.com/

197

Granite Geometry Kernel

As of version 13.0, the Granite geometry kernel is no longer supported.

199

Mesh-Based Geometry

In contrast to the ACIS format, Mesh-Based Geometry (MBG) is not a third party library and has been developed
specifically for use with CUBIT. Most of CUBIT's mesh generation tools require an underlying geometric representation. In
many cases, only the finite element model is available. If this is the case, CUBIT provides the capability to import the finite
element mesh and build a complete boundary representation solid model from the mesh. The solid model can then be
used to make further enhancement to the mesh. While the underlying ACIS geometry representation is typically non-
uniform rational b-splines (NURBS), Mesh-Based Geometry uses a facetted representation. Mesh-Based Geometry can
be generated by importing either an Exodus II format file or a facet file.

 Creating Mesh-Based Geometry Models

 Improving Mesh-Based Geometry Models for Meshing

 Meshing Mesh-Based Models

 Exporting Mesh-Based Geometry

Many of the same operations that can be done with traditional CAD geometry can also be done with mesh-based
geometry. While all mesh generation operations are available, only some of the geometry operations can be used. For
example, the following can be done with geometric entities that are mesh-based:

 Geometry Transformations

 Merging

 Virtual Geometry Operations

Some operations that are not yet available with mesh-based geometry include:

 Booleans

 Geometry Decomposition

 Geometry Clean-Up

Creating Mesh-Based Geometry Models

Mesh based geometry models can be created in one of two ways

 Importing Exodus II files

 Importing facet files

While both of these methods create geometry suitable for meshing, there are some significant differences:

Exodus II files

Exodus II contains a mesh representation that may include 3D elements, 2D elements, 1D elements and even 0D
elements. It may also contain deformation information as well as boundary condition information. The import mesh
geometry command is designed to decipher this information and create a complete solid model, using the mesh faces as
the basis for the surface representations. Exodus II is most often used when a solid model that has previously been
meshed requires modification or remeshing. Importing an Exodus II file will generate both geometry and mesh entities,
assigning appropriate ownership of the mesh entities to their geometry owners. Deleting the mesh and remeshing, refining
or smoothing are common operations performed with an Exodus II model.

Facet files

The facet file formats supported by CUBIT are most often generated from processes such as medical imaging,
geotechnical data, graphics facets, or any process that might generate discrete data. Importing a facet file will generate a
surface representation only defined by triangles. If the triangles in the facet file form a complete closed volume, then a
volume suitable for meshing may be generated. In cases where the volume may not completely close or may not be of
sufficient quality, a limited set of tools has been provided. In addition to the standard meshing tools provided in CUBIT, it
is also possible to use the triangle facets themselves as the basis for an FEA mesh.

Cubit 13.2 User Documentation

200

Improving Mesh-Based Geometry Models for Meshing

In many cases, the triangulated representations that are provided from typical imaging processes are not of sufficient
quality to use as geometry representations for mesh generation. As a result, CUBIT provides a limited number of tools to
assist in cleaning up or repairing triangulated representations.

1. Using tolerance on STL files

Stereolithography (STL) files, in particular, can be problematic. The import mechanism for STL provides a tolerance
option to merge near-coincident vertices.

2. Using the stitch option on AVS and facet files

The stitch option on the import facets|avs command provides a way to join triangles that otherwise share near-coincident
vertices and edges. This is useful for combining facet-based surfaces to generate a water-tight model.

3. Using the improve option on facet files.

The improve option on the import facets command will collapse short edges on the boundary of the triangulation. This
option improves the quality of the boundary triangles.

4. Smoothing faceted surfaces.

Individual triangles in a faceted surface representation may be poorly shaped. Just like mesh elements may be smoothed,
facets may also be smoothed in CUBIT using the following command

Smooth <surface_list> Facets [Iterations <value>] [Free] [Swap]

To use this command, the surface cannot be meshed. Facet smoothing consists of a simple Laplacian smoothing
algorithm which has additional logic to make sure it does not turn any of the triangles in-side out. It also determines a local
surface tangent plane and projects the triangle vertices to this plane to ensure the volume will not "shrink". The iterations
option can be used to specify the number of Laplacian smoothing operations to perform on each facet vertex (The default
is 1).

The free option can be used to ignore the tangent plane projection. Used too much, the free option can collapse the
model to a point. One of two iterations of this option may be enough to clean up the triangles enough to be used for a
finite element mesh.

The swap option can be used to perform local edge swap operations on the triangulation. The quality of each triangle is
assessed and edges are swapped if the minimum quality of the triangles will improve.

5. Creating a thin offset volume

Offset surfaces may be generated from an existing facet-based surface. This would be used in cases where a thin
membrane-like volume might be required where only a single surface of triangles is provided. This command may be
accomplished by using the standard create body offset command

The result of this command is a single body with an inside and outside surface separated by a small distance which is
generally suitable for tet meshing. This command is currently only useful for small offsets where self-intersections of the
resulting surface would be minimal. It is most useful for bodies that may be initially composed of a single water-tight
surface.

6. Creating volumes from surfaces

A mesh-based geometry volume can be created from a set of closed surfaces. This can be accomplished in the same
manner as the standard create body surface command

Create Body Surface <surface_id_range>

This command is limited to surfaces that match triangles edges and vertices at their boundary. The command will
internally merge the triangles to create a water-tight model that would generally be suitable for tet meshing.

Mesh-Based Geometry

201

Meshing Mesh-Based Models

Mesh-Based models may be meshed just like any other geometry in CUBIT by first setting a scheme, defining a size and
using the mesh command. This standard method of mesh generation can be somewhat time consuming and error prone
for complex facet models with thousands of triangles. CUBIT also provides the option of using the facets themselves as a
surface triangle mesh, or as the input to a tetrahedral mesher. This may be accomplished with one of two options:

Mesh <entity_list> From Facets

This command will generate triangular finite elements for each facet on the surface. If the entity_list is composed of one
or more volumes, then the tetrahedral mesh will automatically fill the interior. This method is useful when further cleanup
and smoothing operations are needed on the triangles after import.

Import Facets <filename> Make_elements

The make_elements on the import facets command will generate the triangular finite elements on the surface at the time
the facets are read and created. This option is useful if no further modifications to the facets are necessary.

Creating triangular finite elements in this manner can greatly speed up the mesh generation process, however it is limited
to non-manifold topology. If the triangular elements are to be used for tetrahedral meshing (i.e. all edges of the
triangulation should be connected to no more than two triangles)

Exporting Mesh-Based Geometry

Mesh-Based geometry models and their mesh may be exported by one of the following methods:

 Exporting to an Exodus II File

 Exporting to a facet file

Exodus II

Exporting to an Exodus II file saves the finite element mesh along with any boundary conditions placed on the model. It
will not save the individual facets that comprise the mesh-based geometry surface representation. Importing an Exodus II
file saved in this manner will regenerate the surfaces only to the resolution of the saved mesh.

Facet files

CUBIT also provides the option to save just the surface representation to a facet or STL file. The following commands can
be used for saving facet or STL files:

Export Facets 'filename' <entity_list> [Overwrite]

Export STL [ASCII|Binary] 'filename' <entity_list> [Overwrite]

These commands provide the option of saving specific surfaces or volumes to the facet file. If no entities are provided in
the command, then all surfaces in the model will be exported to the file. The overwrite option forces a file to overwrite any
file of the same name in the current working directory.

203

Importing ACIS Files

The command used to read an ACIS file is:

Import Acis '<acis_filename>' [No_bodies][No_surfaces] [No_curves][No_vertices][Group
{'<name>'|<id>}] [Binary|Ascii] [Show_Each] [Sort] [XML '<xml_filename>'] [Attributes_On]
[Separate_Bodies] [merge_gloabally] [Heal]

The import ACIS command is the primary mechanism for generating geometry within CUBIT. ACIS parts can be
generated and saved with CUBIT, but in most cases are developed within a 3rd party CAD package and exported for use
in CUBIT. CUBIT provides the capability to import ACIS solid models and make modifications to them so they can be
meshed. CUBIT incorporates the commercial ACIS libraries developed and maintained by Spatial Inc. for reading and
writing ACIS format files. IGES and STEP format files can also be imported and exported to/from CUBIT using the
Spatial's libraries.

Import Options

It is possible to include free entities (vertices, curves and surfaces) in the file. The default operation is to read all entities in
the file whether they are included as part of a body or are free. By using any of the options no_bodies, no_surfaces,
no_curves, or no_vertices, the user may exclude certain types of free entities.

The group option of the import command will allow the user to create a group for each set of imported geometry. The
newly created group can later be accessed using the name or id specified with the group option.

The import capability of ACIS files supports both the ASCII format (.sat) and binary format (.sab). When importing, the
filename extension will determine the default file type, be it ASCII or binary. A (.sat) extension will default to ASCII, while a
(.sab) extension will default to binary. If you use a different file extension you can specify the type with the [binary|ascii]
option. Binary files can be significantly faster but are not guaranteed to be upward compatible, nor cross-platform
compatible. Therefore, it is recommended that models be archived in ASCII format.

Normally the numerical IDs of the geometric entities contained in the ACIS model are used directly within CUBIT. The sort
option provides the capability to compress the IDs read from the ACIS file. The sort option does the same thing as the
compress ids sort command, but combines it with the import command to remove a step in the process.

The show_each option is a graphics option that applies to how the volumes are shown as they are imported. If there are
multiple volumes in the file, the graphics display will be updated between each volume during import.

The xml option will read assembly information and other metadata from an XML file in the DART metadata XML format.
See the metadata documentation and the Analyst's Home Page for details.

The attributes_on option will enable attribute support for the file. Attributes include properties like entity color, entity id,
and meshing scheme. Including the attributes option will only affect the current import. The settings will be restored to
their previous settings after importing.

The separate_each option creates a separate body for each volume that is imported, preventing multi-volume bodies
from being imported.

When importing, the use may specify the scope of the merge using merge_globally. The default behavior is to merge
within the scope of the file being imported. With the merge_globally option, imported entities will merge with anything,
including entities already in the Cubit session that have merge attributes on them.

Use the heal option to heal the entities when importing.

Importing ACIS files at startup

ACIS files can also be imported using the "-solid" option when starting CUBIT from the UNIX command prompt. (See
Execution Command Syntax for details.) Note that the filename must be enclosed in single or double quotes. This
command will create as many bodies within CUBIT as there are bodies in the input file.

See also Exporting ACIS Files.

http://www.spatial.com/
http://www-irn.sandia.gov/analyst

205

Importing FASTQ Files

CUBIT can read a FASTQ file and convert it into an ACIS model:

Import Fastq '<fastq_filename>'

Note that the filename must be enclosed in single or double quotes.

FASTQ is an older, 2d meshing tool; (Blacker 88.) FASTQ files are a series of commands much like a CUBIT journal file.
All FASTQ commands are fully supported except for the "Body" command (it is unnecessary and ignored), the "corn"
(corner) line type, and some of the specialized mapping primitive "Scheme" commands. Standard mapping, paving, and
triangle primitive scheme commands are handled. The pentagon, semicircle, and transition primitives are not handled
directly, but are meshed using the paving scheme. The FASTQ input file may have to be modified if the Scheme
commands use any non-alphabetic characters such as `+', `(`, or `)'. Circular lines with non-constant radius are generated
as a logarithmic decrement spiral in FASTQ; in CUBIT they will be generated as an elliptical curve.

Since a FASTQ file by definition will be defined in a plane, it must be projected or swept to generate three dimensional
geometry. CUBIT supports sweeping options to convert imported FASTQ geometries into volumetric regions.

207

Importing STEP Files

The ACIS STEP translator provides bi-directional functionality for data translation between ACIS and the file format
standard STEP AP203.

STEP AP203 is an international standard which defines a neutral file format for representation of configuration control
design data for a product.

The command used to import a STEP file are:

Import Step '<step_filename>' [No_bodies][No_surfaces] [No_curves] [No_vertices] [HEAL|Noheal]
[Logfile ['filename'] [Display]] [Show_Each] [Group {'<name>'|<id>}] [Sort] [XML '<xml_filename>']

Import Options

It is possible to include free entities (vertices, curves and surfaces) in the file. The default operation is to read all entities in
the file whether they are included as part of a body or are free. By using any of the options no_bodies, no_surfaces,
no_curves, or no_vertices, the user may exclude certain types of free entities.

By default, bodies are automatically healed when imported - if this causes problems, you can disable this option by using
the noheal argument.

The logfile option specifies a file where informational messages generated during import of the STEP file will be written.
The display option will display the file.

The show_each option is a graphics option that applies to how the volumes are shown as they are imported. If there are
multiple volumes in the file, the graphics display will be updated between each volume during import.

The group option of the import command will allow the user to create a group for each set of imported geometry. The
newly created group can later be accessed using the name or id specified with the group option.

Normally the numerical IDs of the geometric entities contained in the STEP model are used directly within CUBIT. The
sort option provides the capability to compress the IDs read from the STEP file. The sort option does the same thing as
the compress ids sort command, but combines it with the import command to remove a step in the process.

The xml option will read assembly information and other metadata from an XML file in the DART metadata XML format.
See the metadata documentation and the Analyst's Home Page for details.

Beginning with version 13.0, Cubit will read assembly information embedded in the imported STEP file. No additional
arguments are required. The resultant assembly/part structure will be displayed in the GUI's main entity tree.

Exporting a STEP file from Pro/Engineer

To export a STEP file from Pro/ENGINEER, from the Export STEP Dialog, Press Options.

In the file step_config.pro add the following:

STEP_EXPORT_FORMAT AP203_CD.

Also be sure your export option is set to Solids. If the geometry has problems in CUBIT, you may need to increase the
geometry accuracy in Pro/ENGINEER.

See also Exporting STEP Files.

209

Importing IGES Files

The ACIS IGES translator provides bi-directional functionality for data translation between ACIS and the IGES (Initial
Graphics Exchange Specification) format.

The commands to import IGES files are:

Import Iges '<iges_filename>' [No_bodies] [No_surfaces] [No_curves] [No_vertices] [Group
{'<name>'|<id>}] [Nofreesurfaces] [HEAL|noheal] [Logfile ['filename'] [Display]] [Show_Each] [Sort]

Import Options

It is possible to include free entities (vertices, curves and surfaces) in the file. Default operation is to read all entities in the
file whether they are included as part of a body or are free. By using any of the options no_bodies, no_surfaces,
no_curves, or no_vertices, the user may exclude certain types of free entities.

The group option of the import command will allow the user to create a group for each set of imported geometry. The
newly created group can later be accessed using the name or id specified with the group option.

The nofreesurfaces option will automatically convert free surfaces to bodies. By default this option is off.

By default, bodies are automatically healed when imported - if this causes problems, you can disable this option by using
the noheal argument.

The logfile option specifies a file where informational messages generated during import of the STEP file will be written.
The display option will display the file.

The show_each option is a graphics option that applies to how the volumes are shown as they are imported. If there are
multiple volumes in the file, the graphics display will be updated between each volume during import.

Normally the numerical IDs of the geometric entities contained in the ACIS model are used directly within CUBIT. The
sort option provides the capability to compress the IDs read from the ACIS file. The sort option does the same thing as
the compress ids sort command, but combines it with the import command to remove a step in the process.

Note that the IGES import and export functionality might not be available on all 64-bit platforms.

See also Exporting IGES Files.

211

Importing Facet Files

CUBIT provides the capability to import a model composed of facets to create geometry. The command to import facets
from a file is:

Import [Facets|AVS|STL] ''<filename>" [Feature_Angle] [LINEAR||Spline] [MERGE|No_merge] [Make_elements] [Stitch]
[Improve]

Facets are simply triangles that have been stitched together to form surfaces. Faceted geometry representations are
commonly used for graphics, bio-medical, geotechnical and many other applications that output a discrete surface
representation. Upon import, the resulting geometry representation is Mesh-Based Geometry. Figure 1. shows an
example of a faceted model and the resulting geometry created in CUBIT.

Figure 1. Example of faceted model and the resulting solid model created in CUBIT from the facets.

For convenience, the import facet command currently supports three different formats, facet, AVS and STL

 Facet format: The facet file format is a simple ASCII file that contains vertex coordinates and connectivities.
The facet file format is described below.

 AVS format: The AVS format is a general geometry format that can support a variety of polygonal shapes. In
CUBIT's implementation of the AVS import, it will support only triangles.

 STL format: Perhaps the most common format in the industry is Stereolithography (STL). CUBIT supports both
ASCII and binary forms of the STL format. While the STL format is adequate for graphics and visualization, it
can be problematic for geometry applications such as CUBIT. Each triangle in the STL format is represented
independently. This means that multiple definitions of a single vertex are included in the file. CUBIT will attempt
to merge duplicate vertices to form a water-tight surface. In cases where the vertex locations may not
correspond exactly, an optional tolerance argument may be used on the import command. The tolerance
option is used only for STL format files.

Cubit 13.2 User Documentation

212

Facet File Format

The format for the ASCII facet file is as follows

n m
id1 x1 y1 z1
id2 x2 y2 z2
id3 x3 y3 z3
.
.
.
idn xn yn zn
fid1 id<1> id<2> id<3> [id<4>]
fid2 id<1> id<2> id<3> [id<4>]
fid3 id<1> id<2> id<3> [id<4>]
.
.
.
fidm id<1> id<2> id<3> [id<4>]

Where:

n = number of vertices
m = number of facet
id<i> = vertex ID if vertex i
x<i> y<i> z<i> = location of vertex i
fid<j> = facet ID if facet j
id<1> id<2> id<3> = IDs of facet vertices
[id<4>] = optional fourth vertex for quads

As noted above, the facets can be either quadrilaterals or triangles. Upon import, the facets serve as the underlying
representation for the geometry. By default, the facets are not visible once the geometry has been imported. To view the
facets, use the following command:

draw surf <id range> facets

Feature Angle

The feature angle option is used to specify the angle at which surfaces will be split by a curve or where curves will be
split by a vertex. 180 degrees will generate a surface for every facet, while 0 degrees will define a single, unbroken
surface from the shell of the mesh. The default angle is 135 degrees. This feature is identical to the feature angle option
available when importing Exodus II files.

Smooth Curves and Surfaces

This option permits the use of a higher order approximation of the surface when remeshing/refining the resulting
geometry. Default is to use the original facets themselves as the curve and surface geometry representation. If the facet
model to be imported is to represent geometry with curved surfaces, it may be useful to apply this option. If the Spline
option is selected, it will use a 4th order B-Spline approximation to the surface [Walton,96]. More information on using
smooth approximation of the facets is available in Importing an Exodus II File.

Merge

This option allows the user to either merge or not merge the resulting surfaces. The default option is to merge adjacent
surfaces. This results in non-manifold topology, where neighboring surfaces share common curves. The no_merge
option, adjacent surfaces will generate distinct/separate curves.

Make elements

This option creates mesh elements from each of the facets on the facet surface.

Importing Facet Files

213

Stitch

The stitch option is used with the facet or avs format files to try to merge vertices and triangles that are close. Figure 2
shows an example of where this might be employed. The model on the left contains facets that are not connected
between the red and blue groups. In this case, the surfaces will not be water-tight, even though the vertices on the
boundary between the two groups may be coincident. The stitch option attempts to eliminate the extra edge and vertex
between the groups to form the model on the right. This option can be useful when importing facet files for 3D meshing.
CUBIT's 3D meshing algorithms require a water-tight (closed) set of surfaces.

Figure 2. Example use of the stitch option on import.

Improve

The improve option will collapse short edges on the boundary of the triangulation that are less than 30% the length of the
average edge length in the model. In some cases, short edges are the result of discrete boolean operations on the
triangulation which may result in edges that are of negligible length. This option is particularly useful for boundaries where
multiple surfaces come together at an edge. Figure 3. shows an example of where the improve option improved the
quality of the triangles at the boundary. This option is especially useful if the facets themselves will be used for the FEA
mesh.

Triangles near a boundary that have not been
used the improve option

The same set of triangles where improve option
has collapsed edges

Figure 3. Example use of the improve option

215

Importing Granite Files

As of version 13.0, native Granite models are no longer supported.

217

Creating Vertices

The basic commands available for creating new vertices directly in CUBIT are:

 XYZ location

 On Curve - Fraction

 On Curve - General

 From Vertex

 At Arc

 At Intersection

1. XYZ location: The simplest form of this command is to specify the XYZ location of the vertex. It can also be created
lying on a curve or surface in the geometric model by specifying the curve or surface id; the position of the vertex will be
the point on the specified entity which is closest to the position specified on the command. With all of these commands,
the user is able to specify the color of the vertex.

Create Vertex <x><y><z> [On [Curve | Surface] <id>] [Color <color_name>]

2. On Curve - Fraction: A vertex can be positioned a certain fraction of the arc length along a curve using the second
form of the command.

Create Vertex On Curve <id> Fraction <0.0 to 1.0> [Color <color_name>]

Vertex 3 in the following example was created with this command:

create vertex on curve 1 fraction 0.25 from vertex 1

Figure 1. Create Vertex a Fraction of the length of a Curve

3. On Curve - General: A more general purpose form of the command is also available for creating vertices on curves:

Create Vertex On Curve <id_list> { MIDPOINT | Start | End | Fraction <val 0.0 to 1.0> [From Vertex
<id> | Start|End] | Distance <val> [From {Vertex|Curve|Surface} <id> | Start|End] | {{Close_To|At}
Location {options} | Position <xval><yval><zval>|{Node|Vertex} <id>} | Extrema [Direction] {options}
[Direction {options}] [Direction {options}] | Segment <num_segs> | Crossing {Curve|Surface} <id_list>
[Bounded|Near] } [Color <color_name>]

It allows the vertex to be created at a fractional distance along the curve, at an actual distance from one of the curves
ends, at the closest location to an xyz position or another vertex, or at a specified distance from a vertex, curve or surface.
You can also preview the location first with the command Draw Location On Curve (where the rest of the command is
identical to the Create Vertex form).

4. From Vertex: Create a vertex from an existing vertex.

Create Vertex from Vertex <id_list> [On {Curve|Surface} <id>] [Color <color_name>]

Cubit 13.2 User Documentation

218

If 'on curve|surface' option is used, the vertex is positioned on that curve or surface. When the 'on curve|surface' is not
used, the new vertex is positioned on the existing vertex.

5. At Arc: Another form simply creates vertices at arc or circle centers.

Create Vertex Center Curve <id_list> [Color <color_name>]

6: At Intersection: The last form creates vertices at the intersection of two curves. If the bounded qualifier is used, the
vertices are limited to lie on the curves, otherwise the extensions of the curves are also used to calculate the
intersections. The near option is only valid for straight lines, where the closest point on each curve is created if they do not
actually intersect (resulting in two new vertices).

Create Vertex AtIntersection Curve <id1> <id2> [Bounded] [Near] [Color <color_name>]

219

Creating Curves

Curves are created by specifying the bounding lower-order topology (i.e. the vertices) and the geometry (shape) of the
curve (along with any parameters necessary for that geometry). There are several forms of this command:

 Straight

 Parabolic, Circular, Ellipse

 Spline

 Copy

 Arc Three

 Arc End Vertices and Radius

 Arc Center Vertex

 Arc Center Angle

 From Vertex Onto Curve

 Offset

 From Mesh Edges

 Close_To

 Surface Intersection

 Projecting onto Surface

 Helix

1. Straight: The first form of the command creates a straight line or a line lying on the specified surface. If a surface is
used, the curve will lie on that surface but will not be associated with the surface's topology.

Create Curve [Vertex] <vertex_id> [Vertex] <vertex_id> [On Surface <surface_id>]

Straight curves can be created using an axis. The syntax is as follows:

Create Curve Axis {options}

The length of the axis must be specified. Go to Location, Direction, and Axis Specification to see the axis command
description.

Additionally, several connected straight curves can be created with a single command. The syntax for the polyline
command is as follows:

Create Curve Polyline Location {options} Location {options} ...

Notice that two or more locations are used to define a polyline. See Location, Direction, and Axis Specification for the
location command description.

2. Parabolic, Circular, Ellipse: The parabolic option creates a parabolic arc which goes through the three vertices. The
circular and ellipse options create circular and elliptical curves respectively that go through the first and last vertices.

Create Curve [Vertex <vertex_id> [Vertex] <vertex_id> [[Vertex] <vertex_id> [Parabolic|Circular|ELLIPSE
[first angle <val=0> last angle <val=90>]]]

If 'ellipse' is specified, Cubit will create an ellipse assuming the vectors between vertices (1 and 3) and (2 and 3) are
orthogonal. v1-v3 and v2-v3 define the major and minor axes of the ellipse and v3 defines the center point. These vectors
should be at 90 degrees. If not, Cubit will issue a warning indicating the vertices are not sufficient to create an ellipse and
will then default to creating a spiral.

The angle options will specify what portion of the ellipse to create. If none are specified, first angle will default to 0 and
last angle to 90 and the ellipse will go from vertex 1 to vertex 2; if the vertices are free vertices they will be consumed in
the ellipse creation. First angle tells Cubit where to start the ellipse -- the angle from the first axis (v1 - v3)
specified. Last angle tells Cubit where to end the ellipse -- the angle from the first axis. The angle follows the right-hand
rule about the normal defined by (v1 - v3) X (v2 - v3).

Cubit 13.2 User Documentation

220

3. Spline: The spline form of the command creates a spline curve that goes through the all input vertices or locations. To
create a curve from a list of vertices use the syntax shown below. The delete option will remove all of the intermediate
vertices used to create the spline leaving only the end vertices.

Create Curve [Vertex] <vertex_id_list> [Spline] [Delete]

Additionally, spline curves can be created by inputting a list of locations. Where the spline will pass through all of the
specified locations. The syntax is shown below:

Create Curve Spline {List of locations}

See Location, Direction, and Axis Specification to view the location specification syntax.

4. Copy: This command actually copies the geometric definition in the specified curve to the newly created curve. The
new curve is free floating.

Create Curve From Curve <curve_id>

5. Combine Existing Curves: This command creates a new curve from a connected chain of existing ACIS curves.

Create Curve combine curve <id_list> [delete]

6. Arc Three: The following command creates an arc either through 3 vertices or tangent to 3 curves. The Full qualifier
will cause a complete circle to be created.

Create Curve Arc Three {Vertex|Curve} <id_list> [Full]

7. Arc End Vertices and Radius: The following command creates an arc using two vertices, the radius and a normal
direction. The Full qualifier will cause a complete circle to be created.

Create Curve Arc Vertex <id_list>
Radius <value> Normal {<x> <y> <z> | {direction options} [Full]

Go to Location, Direction, and Axis Specification to see the direction command description.

8. Arc Center Vertex: The next form of the command creates an arc using the center of the arc and 2 points on the arc.
The arc will always have a radius at a distance from the center to the first point, unless the Radius value is given. Again,
the Full qualifier will cause a complete circle to be created.

Create Curve Arc Center Vertex <center_id> <end1_id> <end2_id>
[Radius <value>] [Full]
[Normal {<x> <y> <z> | {direction options}]

Go to Location, Direction, and Axis Specification to see the direction command description.

Note: Requires 3 Vertices - first is the center, the other two are the end points of the arc. A normal direction is required
when the three points are colinear. Otherwise a normal direction is optional.

9. Arc Center Angle: This form of the command creates an arc using the center position of the arc, the radius, the normal
direction and the sweep angle.

Create Curve Arc Center {<x=0> <y=0> <z=0> | {location options}
Radius <value>
Normal {<x> <y> <z> | {direction options}
Start Angle <value=0> Stop Angle <value=360>

Go to Location, Direction, and Axis Specification to see the location and direction command descriptions.

10. From Vertex Onto Curve: The following command will create a curve from a vertex onto a specified position along a
curve. If none of the optional parameters are given, the location on the curve is calculated as using the shortest distance
from the start vertex to the curve (i.e., the new curve will be normal to the existing curve).

Create Curve From Vertex <vertex_id> Onto Curve <curve_id> [Fraction <f> | Distance <d> | Position
<xval><yval><zval> | Close_To Vertex <vertex_id> [[From] Vertex <vertex_id> (optional for 'Fraction'
& 'Distance')]] [On Surface <surface_id>]

Creating Curves

221

Note: Default = Normal to the Curve

11. Offset: The next command creates curves offset at a specified distance from a planar chain of curves. The direction
vector is only needed if a single straight curve is given. The offset curves are trimmed or extended so that no overlaps or
gaps exist between them. If the curves need to be extended the extension type can be Rounded like arcs, Extended
tangentially (the default -straight lines are extended as straight lines and arcs are extended as arcs), or extended
naturally.

Create Curve Offset Curve <id_list> Distance <val> [Direction <x> <y> <z>]
[Rounded|EXTENDED|Natural]

Note: Direction is optional for offsets of individual straight curves only

In all cases, the specified vertices are not used directly but rather their positions are used to create new vertices.

12. From Mesh Edges: This commands creates a curve from an existing mesh given a starting node and an adjacent
edge.

Create Curve From Mesh Node <id> Edge <id> [Length <val>]

The adjacent edge indicates which direction to propagate the curve.
The curve will be composed of mesh edges up to the specified length.
If no length is specified the curve will propagate as far as the boundary of the mesh. Figure 1 shows a example of a curve
generated from the mesh.

Figure 1. Example of curve created from mesh

The underlying geometry kernel used for this command is Mesh-Based geometry. The new curve will also be meshed with
the edges it was propagated through. A related command for assigning mesh edges directly to a mesh block is the Rebar
command. See Element Block Specification for more details.

Note: Full hexes or full tets must be used to propagate the curves through the interior of volume.

13. Close_To This option takes two geometric entities and creates the shortest possible curve between the two entities at
the location where the two entities are the closest. The two entities may NOT intersect. If two vertices are given, the
command will create a straight line between the two vertices.

Create Curve Close_To {Vertex|Curve|Surface|Volume|Body} <id_1>
{Vertex|Curve|Surface|Volume|Body} <id_2>

14. Surface Intersection The following command creates curves at surface intersections. Multiple curves can be created
from a single command.

Create Curve Intersecting Surface <id_list>

Cubit 13.2 User Documentation

222

15. Projecting onto a Surface The project command allows you to make an imprint of a surface or set of curves onto
another surface. The command syntax is as follows:

Project Curve <id_list> Onto Surface <surface_id> [Imprint [Keepcurve] [Keepbody]] [Trim]

Project Surface <id_list> Onto Surface <surface_id> [Imprint [Keepcurve] [Keepbody]]

The command takes a list of curves or surfaces, and a projection surface. If a list of curves is given, the result will be the
creation of a set of free curves on top of the projection surface. If a list of surfaces is given, the result will be the same as
selecting the curves that bound the surface (i.e. a group of free curves on the projecting surface).

The imprint option will imprint the resulting projected curves onto the projection surface. If this option is NOT given, the
new curves will lie coincident to the surface, but will not be part of the surface. Imprinting changes the topology of the
projection surface. Keepcurve option retains the new curves as both free curves, and curves in the projection surface. The
keepbody option retains the original body under the new imprinted body. When projecting curves, the trim option will
cause the curve to be trimmed to the target surface.

16. Creating a Helix: This command will create a helical curve. The command syntax is as follows:

Create Curve Helix { axis <xpoint ypoint zpoint xvector yvector zvector> | xaxis | yaxis | zaxis } location
(options) thread_distance <value> angle <value> [RIGHT_HANDED | left_handed]

axis = axis about which to create the helix

location (options) = starting point of the helix

thread_distance = distance between each 360 degree segment of the helix

angle = number of degrees in rotation of the helix

handedness = right-handed or left- handed threads

223

Creating Surfaces

There are two major ways to create surfaces in CUBIT. First, surfaces can be created in CUBIT by fitting an analytic or
spline surface over a set of bounding curves. In this case, the curves must form a closed loop, and only one loop of
curves may be supplied. The second method, is by sweeping a curve about an axis, along a vector, or along another
curve. The result of these surface creation commands is a "sheet body" or a body that has zero measurable volume (it
does however have a volume entity). This body may be decomposed with booleans and special webcutting commands or
it may be used as a tool to decompose other bodies. Booleans can be used to cut holes out of these surfaces.

The following options may be used for creating a surface in CUBIT.

 Bounding Curves

 Bounding Vertices or Nodes

 Copy

 Extended Surface

 Planar Surface

 Net Surface

 Offset

 Skinning

 Sweeping of Curves

 Midsurface

 Weld Profile

 Meshed Entities

 Circular Surface

 Parallelogram

 Ellipse

 Rectangle

1. Bounding Curves: The first form of this command produces an analytic or spline surface fit to cover the bounding
curves.

Create Surface Curve <curve_id_1> <curve_id_2> <curve_id_3>...

Another version of this command creates a surface from a set of bounding curves that all lie on one surface. If the curves
are selected they must lie on the surface, and they must create a closed loop. The On Surface option forces the surface
to match the geometry of the underlying surface exactly.

Create Surface Curve <id_list> On Surface <surface_id>

2. Bounding Vertices or Nodes: The second form of this command uses vertices to fit an analytic spline surface. The
On Surface option creates the surface from a set of nodes and vertices that all lie on one surface and restrains the
surface to match the geometry of the underlying surface. The project option will project the nodes or vertices to the
specified surface.

Create Surface [Node|Vertex| <id_list> [On Surface <surface_id> {Project}]

3. Copy: The next form creates a surface using the same geometric description of the specified surface. The new surface
will be a stand-alone sheet body that is geometrically identical to the user supplied surface.

Create Surface From Surface <surface_id>

4. Extended Surface: The fourth form of the command creates a surface that is extended from a given surface or list of
surfaces. The specified surface's geometry is examined and extended out "infinitely" relative to the current model in
CUBIT (i.e. extended to just beyond the bounding box of the entire model). The given surfaces are extended as shown in
the table.

Create Surface Extended From Surface <surface_id>

Table 1. Surface Extension Results

Cubit 13.2 User Documentation

224

Surface Type Resulting Extended Surface

Spherical Shell of Full Sphere

Planar Plane of infinite size relative to model

Toroidal Shell of Full Torus

Conical, cone, cylinder... Shell of outside conic axially aligned with given conic of infinite
height relative to model

Spline Surface is extended to extents of the spline definition. This may not
be any further than the surface itself, so caution should be used
here.

Multiple surfaces can be offset at the same time to form a sheet body, by using the Create Sheet Extended from Surface
command.

5. Planar Surface: The following commands create planar surfaces. The first passes a plane through 3 vertices, the
second uses an existing plane, the third creates a plane normal to one of the global axes, and the fourth creates a plane
normal to the tangent of a curve at a location along the curve. By default, the commands create the surface just large
enough to intersect the bounding box of the entire model with minimum surface area. Optionally, you can give a list of
bodies to intersect for this calculation. You can also extend the size of the surface by either a percentage distance or an
absolute distance of the minimum area size. The plane can be previewed with the command Draw Plane [with]... (where
the rest of the command is the same as that to create the surface).

Create Planar Surface [With] Plane Vertex <v1_id> [Vertex] <v2_id> [Vertex] <v3_id> [Intersecting]
Body <id_range>] [Extended Percentage|Absolute <val>]

Create Planar Surface [With] Plane Surface <surface_id> [Intersecting] Body <id_range>] [Extended
Percentage|Absolute <val>]

Create Planar Surface [With] Plane {Xplane|Yplane|Zplane} [Offset <val>] [Intersecting] Body
<id_range>] [Extended Percentage|Absolute <val>]

Create Planar Surface [With] Plane Normal To Curve <curve_id>{Fraction <f>| Distance <d> |
Position <xval><yval><zval> | Close_to vertex <vertex_id>} [[From] Vertex <vertex_id> (optional for
'fraction' & 'distance')] [Intersecting] Body <id_range>] [Extended Percentage|Absolute <val>]

6. Net Surface: Net surfaces can be created with two different commands. A net surface passes through a set of curves
in the u-direction and a set of curves in the v-direction (these u and v curves would looked like a mapped mesh). The first
form of the command uses curves to create the net surface. The curves must pass within tolerance of each other to work.
The second form uses a mapped mesh to create the surface. The mapped mesh can be of a single surface or a collection
of mapped or submapped surfaces that form a logical rectangle. By default net surfaces are healed to take advantage of
any possible internal simplification.

Create Surface Net U Curve <id_list> V Curve <id_list> [Tolerance <value>] [HEAL|Noheal]

Create Surface Net [From] [Mapped] Surface <id_list> [Tolerance <value>] [HEAL|Noheal]

A suggested geometry cleanup method is to use a virtual composite surface to map mesh a set of complicated surfaces
then create a net surface from this mesh. Then the original surfaces can be removed with the noextend option and the
new net surface combined back onto the body.

7. Offset: The following command creates surfaces offset from existing surfaces at the specified distances.

Create Surface Offset [From] Surface <id_list> Distance <val>

The surface offset command will only translate the existing surfaces, without extending or trimming them. An alternate
form of the command for sheet bodies will maintain connections between surface by extending or trimming as they are
offset, shown in Figure 1. On the left, the surfaces are offset using the surface offset command. On the left, the surface is
created by using the "sheet" version of the command.

Creating Surfaces

225

Figure 1. Offsetting surfaces to form individual surfaces or sheet bodies

8. Skinning: The following command creates a skin surface from a list of curves. An example of a skin surface is to
create a surface through a set of parallel lines.

Create Surface Skin Curve <id_list>

9. Sweeping of Curves: A curve or a set of curves can be swept along a path to create new surfaces. The path may be
specified as an axis and angle, a vector and distance, by indicating another curve or set of contiguous curves, or by
specifying a target plane. The following commands show the options available:

Sweep Curve <curve_id_range> { Axis <xpoint ypoint zpoint xvector yvector zvector> | Xaxis | Yaxis |
Zaxis } Angle <degrees> [Steps <Number_of_sweep_steps>] [Draft_angle <degrees>] [Draft_type
<integer>] [Make_solid] [Include_mesh] [Keep][Rigid]

Sweep Curve <curve_id_range> Vector <xvector yvector zvector> [Distance <distance>] [Draft_angle
<degrees>] [Draft_type <integer>] [Include_mesh] [Keep] [Rigid]

Sweep Curve <curve_id_range> Along Curve <refcurve_id_range> [Draft_angle <degrees>]
[Draft_type <integer>] [Include_mesh] [Keep] [Rigid]

Sweep Curve <curve_id_range> Target Plane <options>

Sweep Curve <curve_id_range> Target {Volume|Body} <id> Direction {options} [Plane <options>]
[Unite]

In the first command, the steps options provides a way of faceting the sweep, so instead of a smooth round sweep, there
are facets to the surface. The make_solid option closes the newly-created surface to the axis, so that a solid is created
instead of a surface.

In the above commands, the include_mesh option will create a surface mesh if the curve is already meshed (see figure
below). The keep option will keep the original curve while creating the surface.

Cubit 13.2 User Documentation

226

The sweep curve target plane command sweeps a curve until it hits a target plane. The options for the target plane are
described under Specifying a Plane.

The last command sweeps a curve to a target volume or body and can only be used on sheet bodies. Use the direction
keyword to specify the sweep direction and the plane keyword to specify a stopping plane. The unite keyword will unite
the sheet bodies after sweeping

The other options are as follows:

draft_angle: determines how much drafting in of the surface is desired

draft_type:

0 => extended (draws two straight tangent lines from the ends of each segment until they intersect)

1 => rounded (create rounded corner between segments)

2 => natural (extends the shapes along their natural curve) ***

rigid: normally the curve will rotate to maintain its original orientation to the sweep path. The rigid option disallows this
rotation.

10. Midsurface: Multisurfaces may be created midway between pairs of surfaces using the following command:

Create Midsurface {Body|Volume} <id> Surface <id11> <id12> ... <idN1> <idN2>

where N denotes the number of pairs of surfaces. An even number of surfaces must be specified, and the command will
group them by pairs in the order in which they are provided. The resulting surface will be trimmed by the specified body or
volume <id>. This replaces the Create Midplane command in previous versions of CUBIT.

Figure 2. Multisurface created with the Create Midsurface command

Creating Surfaces

227

Figure 3. Midsurface created from 2 pairs of cylindrical surfaces

Midsufaces can also be extracted without surface pair specification if the resulting surface is a single sheet of surfaces (no
T intersections). The following is the command syntax for automatic midsurface extraction:

Create Midsurface {Body|Volume} <id_range> Auto [Delete] [Transparent] [Thickness] [Limit
<lower_bound> <upper_bound>] [Preview]

Figure 4 shows a simple auto midsurface example. The command for the example is:

create midsurface volume 1 auto delete

Cubit 13.2 User Documentation

228

Figure 4. Midsurface created from a volume

The command option descriptions are listed below.

Auto enables the automatic mid-surface algorithm. Turning Auto off requires the user to specify a single surface pair to
create a mid-surface.

Transparent shows the successfully midsurfaced volumes as transparent in the graphics display

Thickness applies a 2D property to the created mid-surface geometry.

Limit search range gives the algorithm a range to find surface pairs within.

11. Weld Profile: Surfaces may be created by specifying a weld profile using the following command:

Create Surface Weld [Root] Location {options} Weld Surface <id_list> Length <val> [<val2>]

Weld surfaces can be used to create a simulated welded joint by sweeping the surface along the root curve and uniting
the new body to the model. An example of the command is illustrated below. For a detailed description of the location
specifier see Location Direction, and Axis Specification.

create surface weld root location vertex 25 weld surface 13 14 length 2

Figure 5. Weld Profile surface with length and root specifications

12. Creating A Surface From Mesh Entities: Surfaces may be created from the boundaries of meshed volumes,
surfaces, and/or from individual quadrilateral mesh elements. The individual option makes it so you can enter multiple
surfaces at once, and not have them merged together into a larger surface, but instead retain their own original
boundaries. The optional tolerance value allows the user to specify a tolerance to which the resulting surface should be fit.
The default value is 0.001. If surface creation fails, increasing the tolerance value can help.

Create Acis [From] {Surface <id_range> | Volume <id_range> | Face < id_range> [Individual]}
[Tolerance <value>]

Creating Surfaces

229

Figure 6. Acis Surface created from a Set of Quadrilaterals

13. Creating a Circular Surface: This command creates a 2D circular surface. The surface will be centered at the origin
and on the z-plane if a plane option is not specified.

create surface circle radius <value> {xplane|yplane|ZPLANE}

This command creates a 2D circular surface by specifying three vertices; the first vertex will be the center of the surface,
the second vertex will be used to define the radius of the surface, and the third vertex will assist in defining the plane that
the surface will lie in.

create surface circle center vertex <v1_id> <v2_id> <v3_id>

This command creates a 2D circular surface by forming a circular curve through three points.

create surface circle vertex <v1_id> <v2_id> <v3_id>

14. Creating a Parallelogram: This command creates a 2D parallelogram surface, centered at the origin, by specifying
three corner vertices. These vertices will form three consecutive corners of the parallelogram surface.

create surface parallelogram vertex <v1_id> v2_<id> <v3_id>

15. Creating an Ellipse: This command creates a 2D elliptical surface, centered at the origin, by specifying at least a
major radius. On an x-y plane this radius will be the radius along the x-direction. The minor radius will be the radius
along the y-direction. By default, the surface will lie in the z-plane.

Create Surface Ellipse major radius <value> [minor radius <value>] [xplane|yplane|ZPLANE]

This command creates a 2D elliptical surface using three vertices. The first two vertices define the major and minor radii
of the ellipse surface. The third point defines the center of the ellipse. It is important to note that a line from v1_id to
v3_id must be orthogonal to a line from v2_id to v3_id, otherwise the command will fail.

Create Surface Ellipse vertex <v1_id> <v2_id> <v3_id>

16. Creating a Rectangle: This command creates a rectangular surface centered at the origin. If only a width value is
specified, the surface will be a square. On an x-y plane, the width value is the x-direction and the height is the y-
direction. By default, the surface will lie in the z-plane.

Create Surface rectangle width <value> [height <value>] [xplane|yplane|ZPLANE]

231

Creating Bodies

Currently, CUBIT can create volumes:

1. from surfaces by sweeping a single surface into a 3D solid,
2. by offsetting an existing volume,
3. by extending one or more surfaces or sheet bodies
4. by sweeping a curve around an axis,
5. by stitching together surfaces that can form a closed volume,
6. by lofting from one surface to another surface, or
7. by thickening a surface body.

Sweeping of planar surfaces, belonging either to two- or three-dimensional bodies, is allowed, and some non-planar faces
can be swept successfully, although not all are supported at this time. The following methods for generating volumes are
described:

 Sweep Surface Along Vector

 Sweep Surface About Axis

 Sweep Surface Along Curve

 Sweep Surface Perpendicular

 Sweep Surface to a Volume

 Offset

 Sheet extended from surface

 Sweep Curve About Axis

 Stitch Surfaces Together

 Loft Surfaces Together

 Thicken Surfaces

 Sweep Surface

 Sweep Surface along Direction

 Sweep Surface along Helix

There are five forms of the sweep command; the syntax and details for each are given below. Common options for first
four forms are:

draft_angle: This parameter specifies the angle at which the lateral faces of the swept solid will be
inclined to the sweep direction. It can also be described as the angle at which the profile expands or
contracts as it is swept. The default value is 0.0.

draft_type: This parameter is an ACIS-related parameter and specifies what should be done to the
corners of the swept solid when a non-zero draft angle is specified. A value of 0 is the default value
and implies an extended treatment of the corners. A value of 1 is also valid and implies a rounded
(blended) treatment of the corners.

anchor_entity: The default behavior for the sweep command is to move the source surface along a
path to create a new 3D solid. The anchor_entity option instructs the sweep to leave the source
surface in its original location.

include_mesh: This option will sweep the source surface and existing mesh into a meshed 3D solid.
The mesh size is automatically computed using the Default auto interval specification.

The sweep operations have been designed to produce valid solids of positive volume, even though the underlying solid
modeling kernel library that actually executes the operation, ACIS, allows the generation of solids of negative volume (i.e.,
voids) using a sweep.

1. Sweep Surface Along Vector: Sweeps a surface a specified distance along a specified vector. Specifying the distance
of the sweep is optional; if this parameter is not provided, the face is swept a distance equal to the length of the specified
vector. The include_mesh option will create a volumetric mesh if the surface is already meshed as shown below. The
keep option will keep the original surface while creating the volume.

Cubit 13.2 User Documentation

232

Sweep Surface {<surface_id_range>} Vector <x_vector y_vector z_vector> [Distance <distance_value>]
[switchside] [Draft_angle <degrees>] [Draft_type <0|1>][rigid][anchor_entity][include_mesh] [keep] [merge]

Surface mesh swept along a vector

2. Sweep Surface About Axis: Sweeps a surface about a specified vector or axis through a specified angle. The axis of
revolution is specified using either a starting point and a vector, or by a coordinate axis. This axis must lie in the plane of
the surfaces being swept. The steps parameter defaults to a value of 0 which creates a circular sweep path. If a positive,
non-zero value (say, n) is specified, then the sweep path consists of a series of n linear segments, each subtending an
angle of [(sweep_angle) / (steps-1)] at the axis of revolution. The include_mesh option will create a volumetric mesh if
the surface is already meshed as shown below. The keep option will keep the original surface while creating the volume.

Sweep Surface {<surface_id_range>} Axis {<xpoint ypoint zpoint xvector yvector
zvector>|Xaxis|Yaxis|Zaxis} Angle <degrees> [switchside] [Steps <number_of_sweep_steps>]
[Draft_angle <degrees>] [Draft_type <0|1>][rigid][anchor_entity][include_mesh] [keep] [merge]

Surface swept around an axis of 50 degree angle

Specifying multiple surfaces that belong to the same body will not work as expected, as ACIS performs the
sweep operation in place. Hence, if a range of surfaces is provided, they ought to each belong to different bodies.

3. Sweep Surface Along Curve: This command allows the user to sweep a planar surface along a curve:

Sweep Surface <surface_id_range> Along Curve <curve_id> [Draft_angle <degrees>] [Draft_type <0
| 1 | 2>][rigid][anchor_entity][include_mesh] [keep] [individual] [merge]

One of the ends of the curve must fall in the plane of the surface and the curve cannot be tangential to the surface. Sweep
along curve also supports an additional draft type "2" which implies a "natural" extension of the corners from their curves.

The include_mesh option will create a volumetric mesh if the surface is already meshed as shown below. The keep
option will keep the original surface while creating the volume.

Creating Bodies

233

Volume generated by sweeping a surface along a reference curve

4. Sweep Surface Perpendicular: This command allows the user to sweep a planar surface perpendicular to the surface:

Sweep Surface <surface_id_range> Perpendicular Distance <distance> [Switchside] [Draft_angle
<degrees>] [Draft_type <integer>][anchor_entity][include_mesh] [keep] [merge]

The sweeping plane must be planar in order to determine the sweep direction. The switchside option will reverse the
direction of the sweep.

The original surface is retained with the 'keep' option. A new volume is created by sweeping the surface along
the surface normal.

The include_mesh option will create a volumetric mesh if the surface is already meshed as shown below. The keep
option will keep the original surface while creating the volume.

5. Sweep Surface to a Volume: This command allows users to sweep a surface to a volume.

Sweep Surface <surface_id_range> Target {Volume|Body} <id> [Direction {options}] [Plane {options}]

The direction keyword can be used to control the direction of sweep. Without it, Cubit will determine the sweep direction
(usually normal to the sweeping surface). The plane option can be used to define a stopping plane.

6. Offset: The following command creates a body offset from another body or set of surfaces at the specified distance.
The new surfaces are extended or trimmed appropriately. A positive distance results in a larger body; a negative distance
in a smaller body.

Create Body Offset [From] Body <id_range> Distance <value>

Create Sheet Offset From Surface <id_list> Offset <val> [Surface <id_list> Offset <val>] [Surface
<id_list> Offset <val> ...] [Preview]

Using the second form of the command, the sheet body can be created from a list of surfaces, and the surfaces may
offset by different distances. This command currently requires the original surfaces to be on solid bodies.

Cubit 13.2 User Documentation

234

This option is also available for limited cases for facet-based surfaces.

7. Sheet Extended from Surface: The following command creates a body offset from another body or set of surfaces at
the specified distance. The new surfaces are extended or trimmed appropriately. A positive distance results in a larger
body; a negative distance in a smaller body.

Create Sheet Extended From Surface <id_list> [Intersecting <entity_list>] [Extended
{Percentage|Absolute} <val>] [Preview]

This command allows multiple surfaces to be extended at the same time. Optionally, you can give a list of bodies to
intersect for this calculation. You can also extend the size of the surface by either a percentage distance or an absolute
distance of the minimum area size. The plane can be previewed with the preview option. Figure 1 shows a set of surfaces
being created using the extended absolute option.

Figure 1. Sheet created from extending multiple surfaces

8. Sweep Curve About Axis: Sweeps a curve or set of curves about a given axis through a specified angle. The axis is
specified the same as in the Sweep Surface About Axis command. The steps, draft_angle, and draft_type options are the
same as are described above. To create the solid, the make_solid option must be specified, otherwise a surface will be
created, rather than a solid. If the rigid option is specified, then the curve or set of curves will remain oriented as originally
oriented, rather than rotating about the axis.

Sweep Curve <curve_id_range> {Axis <xpoint ypoint zpoint xvector yvector
zvector>|Xaxis|Yaxis|Zaxis} Angle <degrees> [Steps <Number_of_sweep_steps>] [Draft_angle
<degrees>] [Draft_type <integer>] [Make_solid] [Rigid]

9. Stitch Surfaces Together: A body can be created from various surfaces that form a closed volume with command
below. The geometry must be ACIS-type geometry (i.e. imported from IGES, STEP or fastq files) This option is also
available for limited cases for facet-based surfaces.

Create {Body|Volume} Surface <surface_id_range> [HEAL|Noheal] [Keep] [Sheet]

The heal option will attempt to close small gaps in the surface; the noheal option disables this behavior. The keep option
preserves the original surfaces.

Creating Bodies

235

All of the surfaces must form a closed water-tight volume for this command to succeed unless the sheet option is
specified. The sheet option allows for the creation of an open body.

10. Loft Surfaces Together: A body can be "lofted" between two surfaces to form a new body. Surfaces from solid
bodies and sheet bodies may be used to create a loft body. In order to create the loft body, two surfaces coincident to the
input surfaces are created. The loft body is extruded along the shortest path between the corresponding vertices that
define the shapes of the two copied surfaces. This new body is solid. The surfaces used to create the loft body are
unchanged.

Create {Body|Volume} Loft Surface <ids> [guide curve <id_list> [global_guides]] [Takeoff_factors
<one value per surface in order>=.001] [Takeoff_vector Surface <id> {direction options}] [match
vertex <ids>] [closed] [preview] [show_matching_curves]

Note:Source surface ids must be specified in lofting order.

Go to Location, Direction, and Axis Specification to see the direction command

description.

The following options are available for lofting:

 Guide curve: Multiple curves may be specified to guide the loft. The curves must touch each source surface. If
the global_guides option is specified the guides curves are applied in a global nature.

 Takeoff_factors: Takeoff factors control how strongly the loft follows the takeoff vectors. When specifying
takeoff factors one value must be specified for each source surface.

 Takeoff_vector: The takeoff vector controls the direction of the loft for each surface. The default takeoff vector
for each surface is the normal at the surface centroid. One takeoff vector may be specified for each surface.

 Match vertex: This option guides the loft in how to match the vertices of the source surfaces. Multiple match
vertex sets may be specified. When specifying match vertices, one vertex id from each source surface must be
specified. The match vertices must be specified in loft order.

 Closed: This option atempts to create a toroidal solid. The last source surface is lofted to the first source
surface.

 Preview: This option will preview the linking curves of the final solid.

 Show_matching_curves: This option will preview how the vertices of the source surfaces will be matched.

Lofting can be used to split a body in order to create a more structured mesh. Figure 2 below shows a single volume
swept from a large paved surface. Figure 3 shows this same volume after surfaces defined on the source and target
surfaces have been used to create a loft body. This original body was chopped with the loft body. The resulting two bodies
were merged. The yellow volume was swept as the volume in Figure 2 was but the purple volume was submapped,
producing a much more structured mesh overall.

Figure 2. Mesh before loft. Single swept volume with a large paved face.

Cubit 13.2 User Documentation

236

Figure 3. Mesh after loft. The yellow volume is paved and the purple volume is submapped.

11. Thicken Surfaces: A surface body can be thickened to create a volume body. The surface can be thickened in both
directions using the "both" keyword, thickened in the direction of surface normal using a positive depth, or thickened in the
opposite direction using a negative depth. To thicken multiple surfaces, all surface normals must be consistent.

Thicken [Volume|BODY] <id> Depth <depth> [Both]

12. Sweeping a Surface to a Plane: Sweeps a surface normal to a plane and towards the plane until the swept surface
reaches the plane. See plane options for ways to describe a plane.

Sweep surface <id> target plane <options>

13. Sweep Surface along a Direction: Sweep a surface along a direction to create a volume. See direction options for
ways to specify a direction.

Sweep Surface <surface_id_range> Direction (options) [switchside] [draft_angle <degrees>]
[draft_type <integer>] [rigid] [anchor_entity] [include_mesh] [keep] [merge]

Surface extruded along -X direction without 'include_mesh' option

14. Sweep Surface along Helix: Sweep a surface along a helix, where the helix is defined by an axis, thread_distance
(distance between turns in axis direction), axis, and handedness (right_handed or left_handed.

Sweep {Surface|Curve} <id_range> Helix {axis <xpoint ypoint zpoint xvector yvector zvector> | xaxis |
yaxis | zaxis} thread_distance <val> angle <val> [RIGHT_HANDED|left_handed] [anchor_entity]
[include_mesh] [keep] [merge]

*** Specifying multiple Surfaces that belong to the same Body can cause the creation of invalid Bodies and is
discouraged. ***

axis = axis about which to create the sweep

thread_distance = distance between each 360 degree segment of the helix

angle = number of degrees in rotation of the helix

Creating Bodies

237

handedness = right-handed or left- handed threads

Helical Sweep

239

Creating Bricks

The brick is a rectangular parallelepiped.

Command

[Create] Brick {Width|X} <width> [{Depth|Y} <depth>] [{Height|Z} <height>] [Bounding Box
{entity_type} <id_range>] [Tight] [[Extended] {Percentage| Absolute} <val>]]

Notes

 A cubical brick is created by specifying only the width or x dimension.

 A brick can be specified to occupy the bounding box of one or more entities, specified on the command line.

 If the Tight option is specified with Bounding Box, the result is the smallest brick that can contain the entities
specified, which is the default behavior of the Bounding Box option.

 If the Extended option is specified with Bounding Box, the result is a brick that is extended from a "tight" brick
by the input percentage or absolute value.

 If a bounding box specification is used in conjunction with any of the other parameters (X, Y or Z), the
parameters specified override the bounding box results for that or those dimensions.

241

Creating Cylinders

The cylinder is a constant radius tube with right circular ends.

Command

[Create] Cylinder [Height|Z] <val> Radius <val>

[Create] Cylinder [Height|Z] <val> Major Radius <val> Minor Radius <val>

Notes

 A cylinder may also be created using the frustum command with all radii set to the same value.

 Specifying major and minor radii can produce a cylinder with an oval cross section.

243

Creating Prisms

The prism is an n-sided, constant radius tube with n-sided planar faces on the ends of the tube.

Command

[Create] Prism [Height|Z] <z-val> Sides <nsides> Radius <radius>

Notes

 The radius defines the circumradius of the n-sided polygon on the end caps.

 If a major and minor radius are used, the end caps are bounded by a circum-ellipse instead of a circumcircle.

 The number of sides of a prism must be greater than or equal to three. A prism may also be created using the
pyramid command with all radii set to the same value.

 If the Extended option is specified with Bounding Box, the result is a brick that is extended from a "tight" brick
by the input percentage or absolute value.

 If a bounding box specification is used in conjunction with any of the other parameters (X, Y or Z), the
parameters specified override the bounding box results for that or those dimensions.

245

Creating Frustums

A frustum is a general elliptical right frustum, which can also be thought of as a portion of a right elliptical cone.

Command

[Create] Frustum [Height|Z] <z-height> Radius <x-radius> [Top <top_radius>]

[Create] Frustum [Height|Z] <z-height> Major Radius <radius> Minor Radius <radius> [Top
<top_radius>]

Notes

 If used, Major Radius defines the x-radius and Minor Radius the y-radius.

 If used, Top Radius defines the x-radius at the top of the frustum; the top y radius is calculated based on the
ratio of the major and minor radii.

247

Creating Pyramids

A pyramid is a general n-sided prism.

Command

[Create] Pyramid [Height|Z] <z-height> Sides <nsides> Radius <radius> [Top <top-x-radius>]

[Create] Pyramid [Height|Z] <z-height> Sides <nsides> [Major [Radius] <x-radius> Minor [Radius] <y-
radius>] [Top <top-x-radius>]

249

Creating Spheres

The sphere command generates a simple sphere, or, optionally, a portion of a sphere or an annular sphere.

Command

[Create] Sphere Radius <radius> [Xpositive]|[Xnegative] [Ypositive]|[Ynegative] [Zpositive]|[Znegative]
[Delete] [Inner [Radius] <radius>]

Notes

 If Xpositive/Xnegative, Ypositive/Ynegative, and/or Zpositive/Znegative are used, a sphere which occupies that
side of the coordinate plane only is generated, or, if the delete keyword is used, the sphere will occupy the other
side of the coordinate plane(s) specified. These options are used to generate hemisphere, quarter sphere or a
sphere octant (eighth sphere).

 If the inner radius is specified, a hollow sphere will be created with a void whose radius is the specified inner
radius.

251

Creating Toruses

The torus command generates a simple torus

Command

[Create] Torus Major [Radius] <major-radius> Minor [Radius] <minor-radius>

Notes

 Minor Radius is the radius of the cross-section of the torus; Major Radius is the radius of the spine of the
torus.

 The minor radius must be less than the major radius.

253

Align Command

The align command is a combination of the rotate and move commands. The align command will align the surface of a
given volume with any other surface in the model, such that the surface centroids are coincident and the normals are
pointing either in the same or opposite direction (depending on their initial alignment). The align command can also align a
face of a volume with the xy, yz, and xz planes and the vertices of a volume with the x, y, and z axes.

The syntax of the command to align commands are:

Align Volume <id> Surface <surface_id> with Surface <surface_id>

Align Volume <id> {Surface <surface_id>| Vertex <vertex_id>} {{X|Y|Z Axis}|{XY|XZ|YZ plane}}

This transformation is useful for aligning surfaces in preparation for geometry decomposition and aligning models for axis-
symmetric analysis.

255

Copy Command

The copy command copies an existing entity to a new entity without modifying the existing entity. A copy can be made of
several entities at once, and the resulting new entities can be translated or rotated at the same time. The commands for
copying entities are:

Vertex <range> Copy [Move [X <dx>] [Y <dy>] [Z <dz>]] [Preview]

Vertex <range> Copy [Move <direction_options> [Distance <val>]] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Move [X <dx>] [Y <dy>] [Z <dz>]
[Nomesh] [Repeat <value>] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Move <direction_options> [Distance
<val>] [Nomesh] [Repeat <value>] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Reflect {X|Y|Z} [Nomesh] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Reflect [Vertex <v1_id> [Vertex] <v2_id]
[Nomesh] [Preview]

{Body|Volume|Surface|Curve} <range> Copy Reflect <x> <y> <z> [Nomesh] [Preview]

{Body|Volume|Surface|Curve} <range> Copy Rotate <angle> About {X|Y|Z} [Repeat <value>]
[Nomesh] [Preview]

{Body|Volume|Surface|Curve} <range> Copy Rotate <angle> About <x> <y> <z> [Nomesh] [Repeat
<value>] [Repeat <value>] [Preview]

{Body|Volume|Surface|Curve} <range> Copy Scale <scale> | X <val> Y <val> Z <val> [About Vertex
<id>] [Nomesh] [Repeat <value>] [Preview]

If the copy command is used to generate new entities, a copy of the original mesh generated in the original entity will also
be copied directly onto the new entity unless the nomesh option is used.

Several of the commands include the Repeat token. If that token is used the command will repeat itself value times.

This is currently limited to copies that do not interact with adjacent geometry through non-manifold topology. For details on
mesh copies, see the Mesh Duplication documentation.

257

Move Command

The move command moves a body, volume, free surface, free curve or free vertex by a specified offset. The command
syntax is:

Vertex <id_range> [Move [X <dx>] [Y <dy>] [Z <dz>]] [Copy] [Preview]

Vertex <id_range> Move <direction_options< [Distance <val>] [Copy] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <id_range> [Move [X <dx>] [Y <dy>] [Z <dz>]] [Copy
[Nomesh]] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <id_range> Move <direction_options> [Distance <val>]
[Copy [Nomesh]] [Preview]

where <dx> <dy> <dz> and <distance> represent relative offsets in the major axis directions. If the copy option is
specified, a copy is made and the copy is moved by the specified offset. The nomesh option will copy and move only the
geometry.

These forms of the Move command will only work on free surfaces and free curves. To move a curve or surface that is
part of a higher-order entity, the Move {entity} ... command is used.

Moving Other Geometric Entities

It is also possible to move bodies by specifying one of its child entities. For example, a body can by moved by specifying
one of its curves. However, if a lower-order entity is moved, the parent body and all related entities will also be moved.
The commands for moving bodies using a child entity are given below. Alternatively, the tweak command can be used to
move curves and surfaces without moving the parent body.

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint] Location <x> [<y> [<z>]]
[Include_Merged] [Preview]

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> Location [Midpoint] [X <val>] [Y <val>]
[Z <val>] [Except [X] [Y] [Z]] [Include_Merged] [Preview]

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> Normal to Surface <id> Distance <val>
[Include_Merged] [Preview]

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint] General Location
<location_options> [Except [X] [Y] [Z]] [Include_Merged] [Preview]

The first form of the command will move the entity to an absolute location. If moving a group, the centroid of the group is
moved to that location. The second form will move the entity by a relative distance in any of the xyz axis directions.
"Except" is used to preserve the x, y, or z plane in which the center of the entity lies. The third form of the command will
move the body along an axis defined by the outward-facing surface normal of another surface. The fourth form of the
command uses general location parsing to move the entity.

Moving Bodies Relative to Other Geometric Entities

It is also possible to move bodies relative to other geometric entities in the model. The following command takes as
arguments two geometric entities. The first entity is the one to move. The second entity is where it will be moved. In both
cases, the midpoints of the specified entity are used to determine the distance and direction of the move. In the case of
groups, centroids are used. "Except" is used to preserve the x, y, or z plane in which the center of the entity lies.

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint] Location
{Vertex|Curve|Surface|Volume|Body|Group} <id> [Midpoint] [Except [X] [Y] [Z]] [Include_Merged]
[Preview]

Moving Merged Entities

The easiest way to move merged entities is by adding the include_merged keyword to the command. All entities that are
merged with the specified entities will move together.

Cubit 13.2 User Documentation

258

The only other way that merged entities can be moved is by including each of the merged entities in the entity list.

Move Undo

The Undo option allows a user to reverse the most recent move. This command will only work for the Move {entity}
commands, and not the {Entity} Move commands. The syntax is:

Move Undo

259

Scale Command

The scale command resizes an entity (body, volume, surface, or curve) by a scaling factor. The scaling factor may be a
constant, or may differ in the x, y, and z directions. The entity chosen will be scaled about the point or vertex indicated. If
no point or vertex is entered, it will be scaled about the origin. Any mesh on the object will be scaled too, unless the
nomesh keyword is used.

The command to scale entities is:

{Body|Volume|Surface|Curve} <id_range> Scale {<scale> | x <val> y <val> z <val>} [About {<x> <y>
<z> | Vertex <id>}] [Nomesh] [Copy [Repeat <value>] [Group_Results]] [Preview]

If the copy option is specified, a copy of the entity is made and scaled the specified amount. Use the repeat option to
create multiple copies.

261

Rotate Command

The rotate command rotates a body about a given axis without adding any new geometry. If the Angle or any Components
are not specified they are defaulted to be zero. The commands to rotate a body or bodies are:

Body <range> [Copy] Rotate <angle> About {X|Y|Z} [Preview]

Body <range> [Copy] Rotate <angle> About <x-comp> <y-comp> <z-comp> [Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> about {X|Y|Z|<xval> <yval> <zval>}
Angle <val> [Include_Merged] [Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About Vertex <id> Vertex <id> Angle
<val> [Include_Merged] [Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About Normal of Surface <id> Angle
<val> [Include_Merged] [Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About Origin <xval> <yval> <zval>
Direction <xval> <yval> <zval> Angle <val> [Include_Merged] [Preview]

If the copy option is specified, a copy is made and rotated the specified amount.

Rotating Merged Entities

The easiest way to rotate merged entities is by adding the include_merged keyword to the command. All entities that are
merged with the specified entities will rotate together.

The only other way that merged entities can be rotated is by including each of the merged entities in the entity list.

263

Reflect Command

The reflect command mirrors the body about a plane normal to the vector supplied. The reflect command will destroy the
existing body and replace it with the new reflected body, unless the copy option is used.

{Body|Volume|Surface|Curve|Vertex|Group} <range> [Copy] Reflect <x-comp> <y-comp> <z-comp>

{Body|Volume|Surface|Curve|Vertex|Group} <range> [Copy] Reflect {X|Y|Z}

265

Intersect

The intersect command generates a new body composed of the space that is shared by the two bodies being intersected.
Both of the original bodies will be deleted and the new body will be given the next highest body ID available. The
command is:

Intersect {Volume|[Body]} <range> [With {Volume|[Body]} <range>] [Keep] [Preview]

The keep option results in the original bodies used in the intersect being kept.

If the Preview option is included in the command, the input bodies will not be modified. The computed intersection volume
will be drawn as a red, shaded solid. For best results change the graphics mode to transparent or hidden line so the
intersection is visible. Otherwise the intersection volume will be hidden by the volumes being intersected.

267

Subtract

The subtract operation subtracts one body or set of bodies from another body or set of bodies. The order of subtraction is
significant - the body or bodies specified before the From keyword is/are subtracted from bodies specified after From.
The new body retains the original body's id. If any additional bodies are created, they will be given the next highest
available ids. The keep option simply retains all of the original bodies. The command is:

Subtract [Volume|BODY] <range> From [Volume|BODY] <range> [Imprint] [Keep]

The imprint option imprints the subtracted bodies onto the resultant body.

269

Unite

The unite operation combines two or more bodies into a single body. The original bodies are deleted and the new body is
given the next highest body ID available, unless the keep option is used. The commands are:

Unite [Volume|BODY] <range> [With [Volume|BODY] <range>] [Keep]

Unite Body {<range> | All} [Keep]

The second form of the command unites multiple bodies in a single operation. If the all option is used, all bodies in the
model are united into a single body. If the bodies that are united do not overlap or touch, the two bodies are combined into
a single body with multiple volumes.

The unite command allows sheet bodies to be united with solid bodies. To disable this capability you can turn the
following setting off:

Set Unite Mixed {ON|Off}

271

Chop Command

The chop command works similarly to a web cut command, but is faster. Given two bodies, the command will find the
intersection of the two bodies, and divide the main body into a body that lies outside the intersection, and a body that lies
inside the intersection. The tool body will be deleted, unless the keep option is specified. The syntax of the command is:

Chop [Volume|BODY] <id> with [Volume|BODY] <id> [keep] [nonreg]

The nonreg option results in the bodies being non-regularized.

273

Web Cutting by Sweeping Curves or Surfaces

Webcutting with sweeping creates a swept tool body in the same step as the web cut operation. There are 4 general ways
to web cut with sweeping:

 Web Cutting by Sweeping a Surface Along a Trajectory

 Web Cutting by Sweeping a Surface About an Axis

 Web Cutting by Sweeping a Curve(s) Along a Trajectory

 Web Cutting by Sweeping a Curve(s) About an Axis

Web Cutting by Sweeping a Surface Along a Trajectory

This command allows one or more surfaces to be swept, creating a volume that is used for the web cut. If more than one
surface is specified, the surfaces must contain coincident curves. The surfaces are swept along a direction and some
distance or perpendicular and some distance or along a curve. For best results the curve to sweep the surface along
should intersect one of the surfaces. The through_all option will sweep the surfaces along the trajectory far enough so as
to intersect all input bodies. The stop surface <id> option is used to identify a surface at which the sweep will stop. If
using this option when sweeping along a curve, the sweep will stop at the first place possible. The up_to_next option
indicates that the user wants to web cut with only the first water tight volume that forms as a result of the intersection
between sweep and union of all blank bodies. The [Outward|Inward] options specify a sweeping direction that is either
INTO the volume or OUT from the volume.

Webcut {Volume|Body|Group} <range> Sweep Surface <id_range> {Vector <x> <y> <z> [Distance
<distance>] | Along Curve <id>} [Through_all | Stop Surface <id> | Up_to_next] [webcut_options]

Webcut {Volume|Body|Group} <id> Sweep Surface <id_range> Perpendicular {Distance <distance> |
Through_all | Stop Surface <id>} [OUTWARD|Inward] [webcut_options]

sweeping a surface in a direction

resultant web cut

Cubit 13.2 User Documentation

274

along a curve to a stop surface

resultant web cut

Figure 1. Examples of web cutting with swept surfaces

Web Cutting by Sweeping a Surface About an Axis

This command allows a one or more surfaces to be swept, creating a volume that is used for the web cut. If more than
one surface is specified, the surfaces must contain coincident curves. The surface is swept about a user-defined axis or
about one of the x y z coordinate axes and a specified angle. The stop surface <id> option is used to identify a surface at
which the sweep will stop. The up_to_next option indicates that the user wants to web cut with only the first water tight
volume that forms as a result of the intersection between sweep and union of all blank bodies. For these 2 options to work
correctly the user must specify an angle large enough for the rotation to traverse the stop surface or the up_to_next
surface.

Webcut {Volume|Body|Group} <id> Sweep Surface <id_range> {Axis <xpoint ypoint zpoint xvector
yvector zvector> | Xaxis | Yaxis | Zaxis } Angle <degrees> [Stop Surface <id> | Up_to_next]
[webcut_options]

Web Cutting by Sweeping a Curve(s) Along a Trajectory

This command allows a curve(s) to be swept, creating a surface that is used for the web cut. If multiple curves are
specified, they must share vertices and form a continuous path. The curve(s) is swept along a direction and some
distance or along another curve. If sweeping a curve(s) along another curve, for best results the curve(s)-to-swept and the
curve to sweep along should intersect at some point. The stop surface <id> option is used to identify a surface at which
the sweep will stop. If using this option when sweeping along a curve, the sweep will stop at the first place possible. The
through_all option will sweep the curve(s) along the trajectory far enough so as to intersect all input bodies. For the web
cut to be successful, the swept curve(s) must completely traverse a portion of a blank body(s), cutting off a complete
piece of the blank body(s). Option through_all should not be used when defining the web cut with a vector and a distance
or along a curve.

Webcut {Volume|Body|Group} <id> Sweep Curve <id_range> {Vector <x> <y> <z> [Distance
<distance>| Along curve <id>] } [Through_all | Stop Surface <id>] [webcut_options]

Web Cutting by Sweeping a Curve(s) About an Axis

This command allows a curve to be swept, creating a surface that is used for the web cut. If multiple curves are specified,
they must share vertices and form a continuous path. The curve(s) is swept about a user-defined axis or about one of the
x y z coordinate axes and a specified angle. For the web cut to be successful, the swept curve(s) must completely
traverse a portion of a blank body(s), cutting off a complete piece of the blank body(s). The stop surface <id> option is
used to identify a surface at which the sweep will stop. For this option to work correctly the user must specify an angle
large enough for the rotation to traverse the stop surface.

Webcut {Volume|Body|Group} <id> Sweep Curve <id_range> {Axis <xpoint ypoint zpoint xvector
yvector zvector> | Xaxis | Yaxis | Zaxis } Angle <degrees> [Stop Surface <id>] [webcut_options]

275

Web Cutting Options

The following options can be used with all web cut commands:

[NOIMPRINT|Imprint [include_neighbors]]: In its default implementation, web cutting results in the pieces not being
imprinted on one another; this option forces the code to imprint the pieces after web cutting. The include_neighbors option
will also imprint adjacent bodies.

[NOMERGE|Merge]: By default, the pieces resulting from an imprint are manifold; specifying this option results in a
merge check for all surfaces in the pieces resulting from the web cut.

[Group_results]: The various pieces resulting from the previous command are placed into a group named
`webcut_group'.

[Preview]: This option will preview the web cutting plane without executing the command.

277

Web Cutting with a Planar or Cylindrical Surface

The commands used to web cut with a planar or cylindrical surface in CUBIT are:

 Coordinate Plane

 Planar Surface

 Plane from 3 Points

 Plane Normal to Curve

 General Plane Specification

 Cylindrical Surface

Coordinate Plane

In the command's simplest form, a coordinate plane can be used to cut the model, and can optionally be offset a positive
or negative distance from its position at the origin.

Webcut {Volume|Body|Group} <id_range> [With] Plane {xplane|yplane|zplane} [Offset <val>] [rotate
<theta> about x|y|z <xval> <yval> <zval> [center <xval> <yval> <zval>]] webcut_options

The cutting plane can be rotated about a user-specified axis using the rotate option. The center of rotation can be moved
by using the center option.

Planar Surface

An existing planar surface can also be used to cut the model; in this case, the surface is identified by its ID as the cutting
tool.

Webcut {Volume|Body|Group} <id_range> [With] Plane Surface <surface_id> webcut_options

Plane from 3 Points

Any arbitrary planar surface can be used by specifying three vertices that define the plane, and can optionally be offset a
positive or negative distance from this plane.

Webcut {Volume|Body|Group} <id_range> [With] Plane Vertex <vertex_1> [Vertex] <vertex_2>
[Vertex] <vertex_3> [Offset <value>] webcut_options

The plane to be used for the web cut can be previewed with the preview option in the general webcut options.

Plane Normal to Curve

The next command allows a user to specify an infinite cutting plane by specifying a location on a curve. The cutting plane
is created such that it is normal to the curve tangent at the specified location.

Webcut {Volume|Body|Group} <id_range> [With] Plane Normal To Curve <curve_id>
{Position <xval><yval><zval> | Close_To Vertex <vertex_id>} webcut_options

Webcut {Volume|Body|Group} <id_range> [With] Plane Normal To Curve <curve_id>
{Fraction <f> | Distance <d>} [[From] Vertex <vertex_id>] webcut_options

The position on the curve can be specified as:

1. A fraction along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
2. A distance along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
3. An xyz position that is moved to the closest point on the given curve.
4. The position of a vertex that is moved to the closest point on the given curve.

Cubit 13.2 User Documentation

278

The point on the curve can be previewed with the Draw Location On Curve command and the plane to be used for the
web cut can be previewed with the preview option in the general webcut options.

General Plane Specification

A webcut plane can be defined using the general plane specification options in the Specifying a Plane section of the
documentation.

Webcut {Volume|Body|Group} <id_range> [With] General Plane {options} webcut_options

Cylindrical Surface

Finally, a semi-infinite cylindrical surface can be used by specifying the cylinder radius, and the cylinder axis. The axis is
specified as a line corresponding to a coordinate axis, the normal to a specified surface, two arbitrary points, or an
arbitrary point and the origin. The "center" point through which the cylinder axis passes can also be specified.

Webcut {Volume|Body|Group} <range> [With] Cylinder Radius <val> Axis {x|y|z|normal of surface
<id>| vertex <id_1> vertex <id_2>| <x_val> <y_val> <z_val>>} [center <x_val> <y_val> <z_val>]
webcut_options

279

Web Cutting using a Tool or Sheet Body

Any existing body in the geometric model can be used to cut other bodies; the command to do this is:

Webcut {blank} tool [body] <id> [webcut_options]

This simply uses the specified tool body in a set of boolean operations to split the blank into two or more pieces.

Another form of the command cuts the body list with a temporary sheet body formed from the curve loop. This is the same
sheet as would be created from the command Create Surface Curve <id_list>.

Webcut {Body|Group} <id_range> [With] Loop [Curve] <id_range> NOIMPRINT|Imprint]
[NOMERGE|Merge] [group_results]

Webcut {Volume|Body|Group} <id_range> [With] Bounding Box {Body|Volume|Surface|Curve|Vertex
<id_range>} [Tight] [[Extended] {Percentage|Absolute} <val>] [{X|Width} <val>] [{Y|Height} <val>]
[{Z|Depth} <val>]] NOIMPRINT|Imprint] [NOMERGE|Merge] [group_results]

The final form of this command cuts a body with the bounding box of another entity. This bounding box may be tight or
extended.

Figure 1. Cylinder cut with bounding box of prism.

281

Web Cutting with an Arbitrary Surface

An arbitrary "sheet" surface can also be used to web cut a body. This sheet need not be planar, and can be bounded or
infinite. The following commands are used:

Webcut {blank} with sheet {body|surface} <id> [webcut_options]

Webcut {blank} with sheet extended [from] surface <id> [webcut_options]

In its first form, the command uses a sheet body, either one that is pre-existing or one formed from a specified surface.
Note that in this latter case the (bounded) surface should completely cut the body into two pieces. Sheet bodies can be
formed from a single surface, but can also be the combination of many surfaces; this form of web cut can be used with
quite complicated cutting surfaces.

Extended sheet surfaces can also be used; in this case, the specified surface will be extended in all directions possible.
Note that some spline surfaces are limited in extent, and so these surfaces may or may not completely cut the blank.

283

Split Curve

The Split Curve command will split a curve without the need for geometry creation (unlike imprinting). The syntax is shown
below.

Split Curve <id> [location on curve options] [Merge] [Preview]

To split a curve, simply specify a location or a location on curve (see location specification). Using the Preview keyword
will draw the splitting location on the curve. The Merge keyword will merge any topology that contains the newly created
vertex.

285

Split Periodic Surfaces

Solids which contain periodic surfaces include cylinders, torii and spheres. Splitting periodic surfaces can in some cases
simplify meshing, and will result in curves and surfaces being added to the volume. The command used to split periodic
surfaces is:

Split Periodic Body <id_range|all>

This command splits all periodic surfaces in a body or bodies.

287

Split Surface

The Split Surface command divides one or more surfaces into multiple surfaces. The command results are similar to
imprint with curve. However, curve creation is not necessary for splitting surfaces. Three primary forms of the command
are available.

 Split Across

 Split Extend

 Split (Automatically)

 Split Skew

The first form splits a single surface using locations while the second splits by extending a surface hard-line until it hits a
surface boundary. The split automatic splits either a single surface or a chain of surfaces in an automatic fashion.

Split Across

Two forms of Split Across are available:

Split Surface <id> Across [Pair] Location <options multiple locs> [Preview [Create]]

Split Surface <id> Across Location <multiple locs> Onto Curve <id> [Preview] Create]]

This command splits a surface with a spline projection through multiple locations on the surface. See Location, Direction,
and Axis Specification for a detailed description of the location specifier. Figure 1 shows a simple example of splitting a
single surface into two surfaces. A temporary spline was created through the three specified locations (Vertex 5 6 7), and
this curve was used to split the surface.

split surface 1 across location vertex 5 6 7

Figure 1 - Splitting Across with Multiple Locations

The Pair keyword will pair locations to create multiple surface splitting curves (each defined with two locations). An even
number of input locations is required. Figure 2 shows an example:

split surface 1 across pair vertex 5 7 6 8

Cubit 13.2 User Documentation

288

Figure 2 - Splitting Across with Pair Option

The Preview keyword will show a graphics preview of the splitting curve. If the Create keyword is also specified, a free
curve (or curves) will be created - these are the internal curves that are used to imprint the surfaces.

The Onto Curve format of the command takes one or more locations on one side of the surface and projects them onto a
single curve on the other side of the surface. Figure 3 shows an example:

split surface 1 across vertex 5 6 onto curve 4

Figure 3 - Splitting Across with Onto Curve

Split Extend

The Split Extend function can be called with the following command:

Split Surface <id_list> Extend [Vertex <id_list> | AUTO] [Preview [Create]]

With the following settings:

Set Split Surface Extend Normal {on|OFF}

Set Split Surface Extend Gap Threshold <val>

Set Split Surface Extend Tolerance<val>

This command splits a surface by extending a surface hard-line until it hits a surface boundary. Figure 4 shows a simple
example of extending a curve. The hard-line curve was extended from the specified vertex until it hit the surface
boundary.

split surface 1 extend vertex 2

Split Surface

289

Figure 4 - Splitting by Extending Hard-line

The auto keyword will search for all hard-lines and extend them according to the Split Surface Extend settings. Figure 5
shows an example:

split surface 1 extend auto

Figure 5 - Splitting by Extending with Auto Option

The preview keyword will show a graphics preview of the splitting curve. If the create keyword is also specified, a free
curve (or curves) will be created - these are the internal curves that are used to imprint the surfaces.

The normal setting can be turned on or off. When it is on, Cubit will attempt to extend the hard-line so that it is normal to
the curve it will intersect. An example of this is in Figure 6:

set split surface normal on
split surface 1 extend vertex 2

Figure 6 - Splitting by Extending a Hard Line with Normal Setting ON

Cubit 13.2 User Documentation

290

Cubit uses the gap threshold to decide whether or not to extend a hard-line when the user specifies auto. If the distance
between a vertex on a hard-line and the curve it will hit is greater than the gap threshold, then Cubit will not extend that
hard-line. The default value is INFINITY, and can be set to any value. To reset the value back to INFINITY, set the gap
threshold to -1.0. Note: This setting only applies when using the keyword auto. An example of using the gap
threshold is shown in Figure 7:

set split surface gap threshold 2.0
split surface 1 extend auto

Figure 7 - Extending Hard-lines with Gap Threshold = 2.0.
(Notice Vertex 1 was not extended because it exceeded the gap threshold)

The tolerance setting can be used to avoid creating short curves on the surface boundary. If Cubit tries to extend a hard-
line that comes within tolerance of a vertex, it will instead snap the extension to the existing vertex. An example of this is
shown in Figure 8:

set split surface tolerance 1.0
split surface 1 extend vertex 2

Figure 8 - Extending Hard-lines with Tolerance
(Notice the extension snapped to Vertex 3)

Split (Automatically)

This form of the command splits a single surface or a chain of surfaces in an automatic fashion. It is most convenient for
splitting a fillet or set of fillets down the middle - oftentimes necessary to prepare for mesh sweeping.

Split Surface <id_list> [Corner Vertex <id_list>] [Direction Curve <id>] [Segment|Fraction|Distance
<val> [From Curve <id>]] [Through Vertex <id_list>] [Parametric <on|OFF>] [Tolerance <val>]
[Preview [Create]]

 Logical Rectangle

 Split Orientation

 Corner Vertex <id_list>

Split Surface

291

 Direction Curve <id>

 Segment|Fraction|Distance <val> [From Curve <id>]

 Through Vertex <id_list>

 Parametric <on|OFF>

 Tolerance <val>

 Preview [Create]

 Settings (Tolerance, Parametric, Triangle)

The volume shown in Figure 9 was quickly prepared for sweeping by splitting the fillets and specifying sweep sources as
shown (with the sweep target underneath the volume). The surface splits are shown in blue.

Figure 9 - Splitting Fillets to Facilitate Sweeping

Each surface is always split with a single curve along the length of the surface (or multiple single curves if the Segment
option is used). The splitting curve will either be a spline, arc or straight line.

Logical Rectangle

The Split Surface command analyzes the selected surface or surface chain to find a logical rectangle, containing four
logical sides and four logical corners; each side can be composed of zero, one or multiple curves. If a single surface is
selected (with no options), the logical corners will be those closest to 90 and oriented such that the surface will be split
parallel to the longest aspect ratio of the surface. If a chain of surfaces is selected, the logical corners will include the
two corners closest to 90 on the starting surface of the chain and the two corners closest to 90 on the ending surface of
the chain (the split will always occur along the chain).

In Figure 10, the logical corners selected by the algorithm are Vertices 1-2-5-6. Between these corner vertices the logical
sides are defined; these sides are described in Table 1. The default split occurs from the center of Side 1 to the center of
Side 3 (parallel to the longest aspect ratio of the surface), and is shown in blue.

Cubit 13.2 User Documentation

292

Figure 10 - Split Surface Logical Properties

Table 1. Listing of Logical Sides for Figure 10

Logical Side Corner Vertices Curve Groups

1 1-2 1

2 2-5 2,3,4

3 5-6 5

4 6-1 6

Figure 11 shows a surface along with 2 possibilities for its logical rectangle and the resultant splits.

Split Surface

293

Figure 11 - Different Possible Logical Rectangles for Same Surface

Table 2 shows various surfaces and the resultant split based on the automatically detected or selected logical rectangle.
Note that surfaces are always traversed in a counterclockwise direction.

Table 2 - Sample Surfaces and Logical Rectangles

Surface(s) (Resultant Split in Blue) Ordered Corners (to form the Logical Rectangle)

1-2-3-4

(using aspect ratio)

4-1-2-3

(user selected)

Cubit 13.2 User Documentation

294

1-2-5-6

2-5-6-1

1-2-3-4

(split is always along the chain)

1-2-3-4

(notice triangular surfaces along the chain)

1-1-2-3

(note side 1 of the logical rectangle is collapsed; side 3 is
from vertex 2 to 3)

Split Surface

295

1-2-2-3

(note side 2 of the logical rectangle is collapsed)

1-2-3-4

1-2-4-4

1-1-2-2

1-1-2-2

(selected automatically)

Split Orientation

If a chain of surfaces are split, the surfaces will always be split along the chain. The command will not allow disconnected
surfaces.

For a single surface, the split direction logic is a bit more complicated. If no options are specified, the surface aspect ratio
determines the split direction - the surface will be split parallel to the longest aspect ratio side through the midpoint of each
curve. This behavior can be overridden by the order the Corner vertices are selected (the split always starts on the side
between the first two corners selected), the Direction option, the From Curve option, or the Through Vertex list.

Table 3 shows examples of the various split orientation methods. These options are explained in more detail in the
sections below.

Table 3 - Split Orientation Methods

Surface Example Split Orientation Method

Cubit 13.2 User Documentation

296

Multiple surfaces are always split along the chain

Parallel to longest surface aspect ratio (default)

Corner Vertex 4 1 2 3

(split always starts on side 1 of the logical rectangle)

Direction Curve 1

From Curve 1 Fraction .75

or

From Curve 1 Distance 7.5

Through Vertex 5 6

Corner Specification

Split Surface

297

The Corner option allows you to specify corners that form logical rectangle the algorithm uses to orient the split on the
surface. When analyzing a surface to be split, the software automatically selects the corners that are closest to 90. The
Preview option displays the automatically selected corners in red. Sometimes incorrect corners are chosen, so you must
specify the desired corners yourself. The split always starts on the side between the first two corners selected and finishes
on the side between the last two corners selected. Figure 12 shows a situation where the user had to select corners to get
the desired split.

Figure 12 - Selecting the Desired Corners

The split can be directed to the tip of a triangular shaped surface by selecting that corner vertex twice (at the start or end
of the corner list) when specifying corners, creating a zero-length side on the logical rectangle. A shortcut exists whereas
if you specify only 3 corner vertices, the zero-length side will be directed to the first corner selected. If you specify only 2
corner vertices, a zero-length side will be directed to both the first and second corner you select. Table 4 shows these
examples. Note the software will automatically detect triangle corners based on angle criteria - the corner selection
methods for zero-length sides explained in this section need only be applied if the angles are outside of the thresholds
specified in the Set Split Surface Auto Detect Triangle settings.

Table 4 - Selecting Corners to Split to Triangle Tips

Surface Corner Specification

1-2-4-4- or 4-4-1-2

or

4-1-2 (shortcut method)

1-1-2-2 or 2-2-1-1

or

1-2 or 2-1 (shortcut method)

Direction

The Direction option allows you to conveniently override the default split direction on a single surface. Simply specify a
curve from the logical rectangle that is parallel to the desired split direction. If Corners are also specified, the Direction
option will override the split orientation that would result from the specified corner order. The Direction option is not valid
on a chain of surfaces. Figure 13 shows an example.

Cubit 13.2 User Documentation

298

Figure 13 - Direction Specification Overrides Corner Order

Segment|Fraction|Distance

The Segment option allows you to split a surface into 2 or more segments that are equally spaced across the surface.
The Fraction option allows you to override the default 0.5 fractional split location. The Distance option allows you to
specify the split location as an absolute distance rather than a fraction. By specifying a From Curve, you can indicate
which side of the logical rectangle to base the segment, fraction or distance from (versus a random result). Table 5 gives
examples of these options.

Table 5 - Segment, Fraction, Distance Examples

Surface Command Options

Segment 6 From Curve 1

Fraction .3 From Curve 1

Distance 3 From Curve 1

Split Surface

299

Through Vertex

The Through Vertex option forces the split through vertices on surface boundaries perpendicular to the
split direction. Use this option if the desired fraction is not constant from one end of the surface to another or if a split
would otherwise pass very close to an existing curve end resulting in a short curve. Through vertices can be used in
conjunction with the Fraction option - the split will linearly adjust to pass exactly through the specified vertices. It is not
valid with the Segment option. The maximum number of Through Vertices that can be specified is equal to the number of
surfaces being split plus one. The selected vertices can be free, but must lie on the perpendicular curves. Table 6 gives
several examples.

Table 6 - Through Vertex Examples

Surface(s) Command Options

Fraction .3 From Curve 1 Through Vertex 9

Through Vertex 5 6 7 8

Parametric

By default, split locations are calculated in 3D space and projected to the surface. As an alternative, split locations can be
calculated directly in the surface parametric space. In rare instances, this can result in a smoother or more desirable split.
The command option Parametric {on|Off} can be used to split the given surfaces in parametric space. Alternatively, the
default can be overridden with the Set Split Surface Parametric {on|OFF} command.

Tolerance

A single absolute tolerance value is used to determine the accuracy of the split curves. A smaller tolerance will force more
points to be interpolated. The tolerance is also used when detecting an analytical curve (e.g., an arc or straight line)
versus a spline. A looser tolerance will result in more analytical curves. The default tolerance is 1.0. The command option
Tolerance <val> can be used to split the given surfaces using the given tolerance. Alternatively, the default tolerance can
be overridden with the Set Split Surface Tolerance <val> command.

It is recommended to use the largest tolerance possible to increase the number of analytical curves and reduce the
number of points on splines, resulting in better performance and smaller file sizes. The Preview option displays the
interpolated curve points. Table 7 shows the effect of the tolerance for a simple example.

Table 7 - Effect of Tolerance on Split Curve

Surface Tolerance

Cubit 13.2 User Documentation

300

2.0

1.0

0.5

0.01

Preview

The Preview keyword will show a graphics preview (in blue) of the splitting curve (or curves) and the corner vertices (in
red) selected for the logical rectangle. The curve preview includes the interpolated point locations that define spline
curves. Note that if no points are shown on the interior of the curve, it means that the curve is an analytical curve (line or
arc). If the Create keyword is also specified, a free curve (or curves) will be created - these are the internal curves that are
used to imprint the surfaces. Table 8 shows some examples.

Table 8 - Graphics Preview

Surface Curve Type

Spline

Split Surface

301

Arc (no preview points shown on interior of curve)

Settings

This section describes the settings that are available for the automatic split surface command. To see the current values,
you can enter the command Set Split Surface, optionally followed by the setting of interest (without specifying a value).

Set Split Surface Tolerance <val>

This sets the default tolerance for the accuracy of the split curves. See the Tolerance section for more information.

Set Split Surface Parametric {on|OFF}

This sets the default for whether surfaces are split in 3D (default) or in parametric space. See the Parametric section for
more information.

Set Split Surface Auto Detect Triangle {ON|off}

Set Split Surface Point Angle Threshold <val>

Set Split Surface Side Angle Threshold <val>

The split surface command automatically detects triangular shaped surfaces as explained in the section on Corners. This
behavior can be turned off with the setting above. Two thresholds are used when detecting triangles - the Point Angle
threshold and the Side Angle threshold, specified in degrees. Corners with an angle below the Point Angle threshold are
considered for the tip of a triangle (or the collapsed side of the logical rectangle). Corners within the Side Angle threshold
of 180 are considered for removal from the logical rectangle. In order for a triangle to actually be detected, corners for
both the point and side criteria must be met. The default Point Angle threshold is 45, and the default Side Angle threshold
is 27. Figure 14 provides an illustration.

Figure 14 - Triangle Detection Settings

Cubit 13.2 User Documentation

302

Split Skew

The Split Skew function can be called with the following command:

Split Surface <id_list> Skew [Preview] [Create]

This command will split a surface or list of surfaces in a logical way to reduce the amount of skew in a quadrilateral mesh.
This function uses the control skew algorithm to determine where to make these logical splits. Users should note that Split
Skew can only be utilized effectively on surfaces that lend themselves to a structured meshing scheme. These surfaces
cannot have multiple curve loops. Figure 15 shows a simple example of a surface being split.

split surface 1 skew

Figure 15. Split Skew applied to an L-shaped surface

The Preview keyword will show a graphics preview of the splitting curves. If the Create keyword is also specified, free
curves will be created.

303

Section Command

This command will cut a body or group of bodies with a plane, keeping geometry on one side of the plane and discarding
the rest. The syntax for this command is:

Section {Body|Group} <id_range> [With] {Xplane|Yplane|Zplane} [Offset <value>] [NORMAL|Reverse]
[Keep]

Section {Body|Group} <id_range> With Surface <id> [NORMAL|Reverse] [Keep]

In the first form, the specified coordinate plane is used to cut the specified bodies. The offset option is used to specify an
offset from the coordinate plane. In the second form, an existing (planar) surface is used to section the model. In either
case, the reverse keyword results in discarding the positive side of the specified plane or surface instead of the other side.
The keep option results in keeping both sides; the section command used with this option is equivalent to webcutting with
a plane.

305

Separating Multi-Volume Bodies

The separate and split commands are used to separate a body with multiple volumes into a multiple bodies with single
volumes. The commands are:

Separate {Body|Volume} <id_range|all>

and

Split {Body|Volume} <id_range|all>

Only very rarely will either of these commands be needed. They are provided for the occasional instance that a multi-
volume body is found. These commands are interchangeable.

Another related command allows the user to control the separation of bodies after webcutting. In most instances the user
will want to separate bodies after webcutting. One reason to possibly have this option turned off is to be able to keep track
of all the volumes during a webcut. Setting this option to "off" keeps all volumes in the same body. But the more common
approach is to name the original body and allow naming to keep track of volumes. This setting is on by default. The syntax
is:

Set Separate After Webcut [ON|Off]

307

Separating Surfaces from Bodies

The separate surface command is used to separate a surface from a sheet body or a solid body. The command is:

Separate Surface <range>

Separating a surface from a solid body will create a "hole" in the solid body. Thus the solid body will become a sheet
body. The newly separated surface will be also sheet body, but it will have a different id. Multiple surfaces can be
separated from a body at the same time, but each separated surface will result in a distinct sheet body, as if the command
had been performed on each surface individually.

309

Analyzing Geometry

The following command analyzes the ACIS geometry and will indicate problems detected:

Healer Analyze Body <id_range> [Logfile ['filename'] [Display]]

The logfile option writes the analysis results to the filename specified, or to 'healanalysis.log' by default. In the GUI
version of CUBIT, the display option will write the results in a dialog window.

The outputs include an estimate of the percentage of good geometry in each body. The optional logfile will include
detailed information about the geometry analysis. By default CUBIT will also highlight the bad geometry in the graphics
and give a printed summary indicating which entities are "bad". Sample output from this command is shown below:

Percentage good geometry in Body 9: 98%

HEALER ANALYSIS SUMMARY:

Analyzed 1 Body: 9

Found 2 bad Vertices: 51, 52

Found 3 bad Curves: 76, 77, 80

Found 2 bad CoEdges. The Curves are: 76

Found 1 Bodies with problems: 9

Journaled Command: healer analyze body 9

Note that it is not necessary to analyze the geometry before healing; however, it can be useful to analyze first rather than
healing unnecessarily. Also note that healer analysis can take a bit of time, depending on the complexity of the geometry
and how bad the geometry is.

The validate geometry commands work independently of the healer and give more detailed information.

Healer Settings

You can control the outputs from the healer with the following commands:

Healer Set OnShow {Highlight|Draw|None}

Healer Set OnShow {Badvertices|Badcurves|Badcoedges|Badbodies|All} {On|Off}

Healer Set OnShow Summary {On|Off}

These settings allow you to highlight, draw or ignore the bad entities in the graphics. You can control which entity types to
display, as well as whether or not to show the printed summary at the end of analysis.

After you have analyzed the geometry (which can take some time), you can show the bad geometry again with the
"show" command. This command simply uses cached data (healing attributes - see the next section) from the previous
analysis.

Healer Show Body <id_list>

311

Healing Attributes

Once the geometry is analyzed, the results are stored as attributes on the solid model - this allows you to use the "show"
command to quickly display the bad geometry again. The results attributes are automatically removed when the geometry
is exported or any boolean operations are performed. They can also be explicitly removed with the command

Healer CleanAtt Body <id_range>

You can force the results to be removed immediately after each analyze operation with the "CleanAtt" setting (this can
save a little memory):

Healer Set CleanAtt {On|Off}

313

Auto Healing

Healing is an extremely complex process. The general steps to healing are:

 Preprocess - trim overhanging surfaces and clean topology (remove small curves and surfaces).

 Simplify - converts splines to analytic representations, if possible.

 Stitch - geometry cleanup and stitching loose surfaces together to form bodies.

 Geometry Build - repairing and building geometry to correct gaps in the model.

 Post-Process - calculating pcurves and further repairing bad geometry.

 Make Tolerant Curves & Vertices - a last optional step that allows special handling of unhealed entities for
booleans - allowing inaccurate geometry to be tolerated.

Autohealing makes these steps automatic with the following command:

Healer Autoheal Body <id_range> [Rebuild] [Keep] [Maketolerant] [Logfile ['logfilename'] [Display]]

The rebuild option unhooks each surface, heals it individually, then stitches all the surfaces back together and heals
again. In some cases this can more effectively fix up the body, although it is much more computationally intensive and is
not recommended unless normal healing is unsuccessful.

The keep option will retain the original body, putting the resulting healed body in a new body.

The maketolerant option will make the edges tolerant if ACIS is unable to heal them. This can result in successful
booleans even if the body cannot be fully healed - ACIS can then sometimes "tolerate" the bad geometry. Note that the
healer analyze command will still show these curves as "bad", even though they are tolerant. The validate geometry
commands however take this into consideration.

The output from the autoheal command can be written to a file using the logfile option; the default file name is
autoheal.log. The display option works as before, displaying the results in a window in the GUI version of CUBIT.

315

Spline Removal

If healing fails to convert spline surfaces to analytic ones fails, the simplification tolerance can be modified and healing re-
run:

healer default simplifytol .1

healer autoheal body 1

Spline surfaces can also be forced into an analytic form (use this command with caution):

Healer Force {Plane|Cylinder|Cone|Sphere|Torus} Surface <id_list> [Keep]

The Keep option will retain the original body and generate a new body containing analytic surfaces. Note: Spline curves
can be found using entity filters:

Execute Filter Curve Geometry_type Spline

317

What if Healing is Unsuccessful?

The ACIS healing module is under continued development and is improving with every release. However, there will often
be situations where healing is unable to fully correct the geometry. This might be okay, as meshing is rarely affected by
the small inaccuracies healing addresses. However, boolean operations on the geometry can fail if the bad geometry
must be processed by the operation (i.e., a webcut must cut through a bad curve or vertex).

Here are some possible methods to fix this bad geometry:

 Return to the source of the geometry (i.e., Pro/ENGINEER) and increase the accuracy. Re-export the geometry.

 Heal again using the rebuild option.

 Heal again using the make tolerant option.

 Remove the offending surface from the body (using the remove surface command), then construct new
surfaces from existing curves and combine the body back together.

 Composite the surfaces over the bad area, mesh and create a net surface from the composite, remove the bad
surfaces and combine.

 Export the geometry as IGES, import the IGES file into a new model and look for double surfaces or surfaces
that show up at odd angles using the find overlap commands. Delete and recreate surfaces as needed and
combine the surfaces back together into a body.

Contact the development team (cubit-dev@sandia.gov) if you need further help with fixing bad geometry.

319

Tweaking Vertices

The Tweak Vertex command can be used to do the following:

 Tweaking a Vertex With a Chamfer

 Tweaking a Vertex With a Non-Equal Chamfer

 Tweaking a Vertex With a Fillet Radius

Tweaking a Vertex With a Chamfer

Tweak Vertex <id_range> Chamfer Radius <value>[Keep] [Preview]

This form of the command creates a chamfered corner at the specified vertex. Can be use on volumes or free surfaces.
The 'keep' option creates another volume on which the tweak is applied; the original volume remains unmodified.

Figure 1. Tweak Vertex Chamfer

Tweaking a Vertex With a Non-Equal Chamfer

Tweak Vertex <id_range> Chamfer Radius <value> [Curve <id> Radius <value> Curve <id> Radius
<value> Curve <id>] [Keep] [Preview]

This next form of the command creates a non-equal chamfered corner at the specified vertex. Can only be used on
vertices of volumes. The 'keep' option creates another volume on which the tweak is applied; the original volume remains
unmodified.

Cubit 13.2 User Documentation

320

Tweaking a Vertex With a Fillet Radius

Tweak Vertex <id_range> Fillet Radius <value> [Keep] [Preview]

This command replaces a vertex with a filleted radius. The command can only be used on free surfaces. The 'keep' option
creates another volume on which the tweak is applied; the original free surface remains unmodified.

Figure 2. Tweak Vertex Fillet

321

Tweaking Curves

The following options of the Tweak Curve command are available. Command syntax and description follow below.

 Create a Chamfer or Fillet

 Tweaking a Curve Using an Offset Distance

 Removing a Curve

 Tweaking a Curve Using a Target Surface, Curve, or Plane

 Tweaking a Pair of Curves to a Corner

Create a Chamfer or Fillet

The Tweak Curve Chamfer or Fillet command is used to fillet or chamfer a curve. The radius value is the radius of the fillet
arc or chamfer cut distance. The command syntax is:

Tweak Curve <id_range> {Fillet|Chamfer} Radius <value> [Keep] [Preview]

In addition to creating chamfers of a single cut distance, the chamfer can be specified be two values. The syntax is:

Tweak Curve <id_list> Chamfer Radius <val1> [<val2>] [Keep] [Preview]

Figure 1 shows a brick ('br x 10') chamfered with two different cut distances ('Tweak Curve 1 2 Chamfer Radius 2 4').

Figure 1 Chamfer with two different distances

Individual curves can also be filleted with different start and finish radius values. The syntax is:

Tweak Curve <id> Fillet Radius <val1> [<val2>] [Keep] [Preview]

Figure 2 shows a brick ('br x 10') filleted with different start and end radius values (‘Tweak Curve 1 2 Chamfer Radius 2
4’).

Cubit 13.2 User Documentation

322

Figure 2. Fillet with two different radii

For all Tweak Fillet and Tweak Chamfer variations, the keep option prevents the destruction of the original geometry after
the operation and the preview option temporarily displays the new geometry configuration without actually changing the
geometry.

Tweaking a Curve Using an Offset Distance

Tweak Curve <id_list> Offset <val> [Curve <id_list> Offset <val>] [Curve <id_list> Offset <val>
...] [Keep] [Preview]

Tweaking curves a specified distance offsets the existing curves and extends the attached surfaces to meet them. A
positive offset value will enlarge the surface while a negative value will decrease the area of the attached surface.
Different offset values can be specified for each curve. The keep option prevents the destruction of the original geometry
after the operation. The preview option temporarily displays the new geometry configuration without actually changing the
geometry. Figure 3 shows an example of offsetting a curve a specified distance.

Figure 3 Offsetting a set of curves a specified distance

Removing a Curve

Tweak Curve <id_list> Remove [Keep] [Preview]

Tweaking Curves

323

Similar to the Tweak Curve Remove command, the tweak curve remove function removes a specified curve from a sheet
body. Figure 4 shows a simple example of removing a curve from a sheet body.

Figure 4. Removing a curve from a sheet body

The keep option prevents the destruction of the original geometry after the operation. The preview option temporarily
displays the new geometry configuration without actually changing the geometry.

Tweaking a Curve Using Target Surfaces, Curves, or Plane

Use Tweak Curve Target to offset a curve to a specified surface, plane or curve. Figure 5 shows an example of tweaking
a curve to several surfaces.

Figure 5 Tweaking a curve to multiple target surfaces

Similarly, a target plane can be specified using the Plane specification syntax. The Tweak Curve syntax is:

Tweak Curve <id_list> Target {Surface >id_list> [Limit Plane (options)] [EXTEND|Noextend] | Plane
(options)} [Max_area_increase <val>] [Keep] [Preview]

Tweak Curve <id_list> Target Curve <id_list > [EXTEND|Noextend] [Max_area_increase <val>]
[Keep] [Preview]

If a target surface is supplied, the user can also use a limit plane if he wishes. A limit plane is a plane that the tweak will
stop at if the tweaked curve does not completely intersect the target surface. The limit plane must be used with the extend
option. See the help for Specifying a Plane for the options available to define a plane.

Cubit 13.2 User Documentation

324

It should be noted that if the source and target surfaces are from the same body the resulting geometry will be
automatically stitched. Single target surfaces are automatically extended so that the tweaked body will fully intersect the
target. Unfortunately, extending multiple target surfaces can sometimes result in an invalid target, so the option is given to
tweak to non-extended targets with the noextend option. In this case, the tweaked body must fully intersect the existing
targets for success. If you experience a failure when tweaking to multiple targets or the results are unexpected, it is
recommended to try the noextend option (NOTE: Tweaking to multiple targets is only implemented in the ACIS geometry
engine). If a value for the max_area_increasekeyword is given, Cubit will not perform the tweak if the resulting surface
area increases by more than the specified amount. The keyword expects a percentage to be entered (i.e. '50' for 50%). It
is recommended to always preview before using the tweak target commands.

For all tweak target variations, the keep option prevents the destruction of the original geometry after the operation and
the preview option temporarily displays the new geometry configuration without actually changing the geometry.

Although it may not be intuitive curves can also serve as the target geometry. Figure 6 shows an example of extending a
curve to another curve.

Figure 6 Tweaking a curve to a target curve

Notice that the source curve actually extends to the target curve as if the target were a surface.

Tweaking a Pair of Curves to a Corner

When creating mid-surface geometry it is often useful to extend surfaces to form a corner. To handle this specific but
common case use the tweak corner command.

Tweak Curve <id> <id> Corner [Preview]

Figure 7 shows a typical tweak corner example. Notice that surfaces are extended/trimmed to intersect at a corner.

Tweaking Curves

325

Figure 7. Tweaking two curves to a corner

The preview option temporarily displays the new geometry configuration without actually changing the geometry.

327

Tweaking Surfaces

The following options of the Tweak Surface command are available. Command syntax and examples follow below.

 Tweaking a Surface Using an Offset

 Tweaking a Surface by Moving

 Tweaking Surfaces to Target Surfaces

 Removing a Surface

 Tweaking a Conical Surface

 Tweaking Doublers to Target Surface

 Removing Holes and Slots from Sheet Bodies

 Removing Fillets from Sheet Bodies

Tweaking a Surface Using an Offset

Tweak Surface <id_list> Offset <val> [Surface <id_list> Offset <val>] [Surface <id_list> Offset <val>
...] [Keep] [Preview]

The Tweak Offset form of the command offsets an existing set of surfaces and extends the attached surfaces to meet
them. A positive offset value will offset the surface in the positive surface normal direction while a negative value will go
the other way. Different offsets may be specified for each surface. Figure 1 shows a simple example of offsetting. Note
that you can also offset whole groups of surfaces at once. The keep option will retain the original surfaces and curves.

Figure 1. Tweak Offset

Tweaking a Surface by Moving

The Tweak move form of the command simply moves the given surfaces along a vector direction. The direction can be
specified either absolutely or relative to other geometry entities in the model (from entity centroid to location). Note that
when moving a surface for tweak, the surface is moved and the surface and the adjoining surfaces are extended or
trimmed to match up again. So, for example, moving a vertically oriented planar surface in the vertical direction will have
no effect. In this example, if you move the surface 10 in the x and 5 in the y the effect will be to move it simply 10 in the x.
You can also use this form of the command to move a protrusion around - just be sure to specify all of the surfaces on the
protrusion for moving. The last form of the command can be used to move a surface along another surface's normal.

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id> Location
{Vertex|Curve|Surface|Volume|Body} <id> [Except [X][Y][Z]] [Keep] [Preview]

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id> Location <x_val>
<y_val> <z_val> [Except [X][Y][Z]] [Keep][Preview]

Cubit 13.2 User Documentation

328

Tweak Surface <id_range> Move <dx_val> <dy_val> <dz_val> [Keep] [Preview]

Tweak Surface <id_range> Move Direction <options> Distance <val> [Keep] [Preview]

Tweak Surface <id_range> Move Normal To Surface <id> Distance <val> [Except [X][Y][Z]]
[Keep][Preview]

Tweaking Surfaces to Target Surfaces

The Tweak target form of the command actually replaces the given surfaces with a copy of the new surfaces, then
extends and trims surfaces to match up. This can be useful for closing gaps between components or performing more
complicated modifications to models. The command syntax is:

Tweak {Curve|Surface} <id_list> Target {Surface <id_list> [Limit Plane (options)] [EXTEND|noextend]
| Plane (options)} [keep] [preview]

Tweak Surface <id_list> Replace [With] Surface <id_list> [Keep] [Preview]

The plane option allows a plane to be specified instead of target surface(s). If a target surface is supplied, the user can
also use a limit plane if he wishes. A limit plane is a plane that the tweak will stop at if the tweaked surface does not
completely intersect the target surface. The limit plane must be used with the extend option. See the help for Specifying a
Plane for the options available to define a plane.

Single target surfaces are automatically extended so that the tweaked body will fully intersect the target. Unfortunately,
extending multiple target surfaces can sometimes result in an invalid target, so the option is given to tweak to unextended
targets with the noextend option. In this case, the tweaked body must fully intersect the existing targets for success. If
you experience a failure when tweaking to multiple targets or the results are unexpected, it is recommended to try the
noextend option (NOTE: Tweaking to multiple targets is only implemented in the ACIS geometry engine). It is
recommended to always preview before using the tweak target commands.

Figure 2 shows a simple example.

Figure 2. Tweak Surface Target (Viewed directly from the side)

Removing a Surface

The Tweak remove command allows you to remove surfaces from a model by extending the adjacent surfaces to fill in
the resulting gaps. It is identical to the Remove Surface command. See Removing Surfaces for a description of the
command options.

Tweak Surface <id_list> Remove [EXTEND|Noextend] [Keepsurface] [Keep][Preview]

Tweaking a Conical Surface

The Tweak cone form of the command is used to replace a conical projection with a flat circular surface. This command
is useful for simplifying bolt holes. The command syntax is.

Tweak Surface <id_range> Cone [Preview]

Tweaking Surfaces

329

The following is a simple example illustrating the use of the tweak surface cone command.

Figure 3. Conical bolt hole before and after tweaking

Tweaking Doublers to Target Surfaces

The Tweak Doubler form of the command takes a specified surface and creates drop-down surfaces either normal to the
doubler surface or by a user specified vector to a target surface. This can be helpful in creating surfaces for weld
elements between midsurfaced geometry. The resulting surfaces do not create a bounding volume, and do not imprint
themselves onto the target surface. The command syntax is:

Cubit 13.2 User Documentation

330

Tweak Surface <id_list> Doubler Surface <id_list> {[Limit Plane (options)] [EXTEND|noextend]}
[Internal] [Direction (options)] [Thickness] [Preview]

The plane option allows a plane to be specified instead of target surface(s). If a target surface is supplied, the user can
also use a limit plane if he wishes. A limit plane is a plane that the tweak will stop at if the tweaked surface does not
completely intersect the target surface. The limit plane must be used with the extend option. See the help for Specifying a
Plane for the options available to define a plane.

Single target surfaces are automatically extended so that the tweaked body will fully intersect the target. Unfortunately,
extending multiple target surfaces can sometimes result in an invalid target, so the option is given to tweak to unextended
targets with the noextend option. In this case, the tweaked body must fully intersect the existing targets for success. If
you experience a failure when tweaking to multiple targets or the results are unexpected, trying the noextend option is
recommended.

If the doubler surface has a thickness property value, you can propagate that thickness value to the newly created drop-
down surfaces by using the thickness flag.

It is recommended to always preview before using the tweak doubler commands.

NOTE: This function only works for ACIS geometry.

Geometry Output

Figure 3. Extending a doubler surface to target

The internal option will also include internal curves when the surface is extended (see Figure 4c). The direction option
will create a skewed surface along the given direction (see Figure 4d).

Tweaking Surfaces

331

Figure 4. Explanation of tweak doubler options (a) Original surfaces (b) No option flags used (c) Internal option
used - notice internal curves dropped down (d) Direction flag - notice skew

Removing Holes and Slots from Sheet Bodies

The Tweak Hole/Slot Idealize command takes a specified sheet body(s) and searches for either holes or slots (or both)
which meet the user's input parameters. This can be helpful in removing small holes or slots quickly and efficiently from
midsurfaced bodies where such level of detail isn't required. The command syntax is:

Tweak Surface <id_list> Idealize {[Hole Radius <val>] [Slot Radius <val> Length <val>]} [Exclude
Curve <id_list>] [Preview]

Below is a diagram showing the different parameters available for input by the user.

Figure 5. Input parameters for tweak surface idealize command

#Hole Removal Example
tweak surface 13 idealize hole radius 6

Cubit 13.2 User Documentation

332

Figure 6. Example of hole removal using tweak surface idealize command

The exclude option allows the user to specify individual curves that should not be deleted, even if they meet the search
criteria for removal. Figure 7 shows another hole removal example where several curves were excluded.

Figure 7. Example of hole removal using exclude option

Note: This feature is for ACIS geometry

It is recommended to always preview before using the tweak command. Preview will highlight all curves slated to be
removed if the command is executed.

Removing Fillets from Sheet Bodies

The Tweak Fillet Idealize command takes a specified sheet body(s) and searches for either internal or external fillets (or
both) which meet the users' radius parameter. This can be helpful in removing fillets quickly and efficiently from
midsurfaced bodies where such level of detail isn't required. The command syntax is:

Tweak Surface <id_list> Idealize Fillet Radius <val> {[Internal] [External]} [Exclude Curve <id_list>]
[Preview]

#Fillet Removal Example
tweak surface 13 idealize fillet radius 6 internal

Tweaking Surfaces

333

Figure 8. Example of fillet removal using tweak surface idealize command

Note: This feature is for ACIS geometry

It is recommended to always preview before using the tweak command. Preview will show the result if the command is
executed.

Figure 9. Preview of the tweak surface idealize command

335

Tweak Remove Topology

The Tweak Remove Topology command removes curves and surface from a model and replaces them with new
topology. The reconstruction of the new topology and the stitching of it into the model is done using real solid modeling
kernel operations. This command is intended to be used on small curves and surfaces in the model. The command tries
to find small curves/surfaces neighboring the specified topology and includes these neighbors in the removal process.
Thus, the command can often be used to remove networks of small features just by specifying a single curve or surface.

Tweak Remove_Topology {Surface <id_range> | Curve <id_range> | Surface <id_range> Curve
<id_range>} Small_curve_size <val> Backoff_distance <val>

The small_curve_size is input by the user, and is used to calculate the small curves and surfaces. The
backoff_distance value specifies how far away from the original topology cuts are made to cut out the old topology and
stitch in the new topology. The removed topology is replaced by simplified topology where possible often resulting in a
dimension reduction of the original topology. Extraneous curves that are introduced during the cutting and stitching
process are regularized out if possible using the solid modeling kernel regularize functionality or are composited out using
virtual geometry if the regularization is not possible.

Note: This command is currently only implemented for ACIS and Catia models.

Example

reset
set attribute on
import acis "test10.sat"
separate body all
set attribute off
Auto_clean Volume 1 Split_narrow_regions Narrow_size 2.2
tweak remove_topology curve 19 small_curve_size .21 backoff 1.5

Cubit 13.2 User Documentation

336

Tweak Remove Topology

337

Figure 1. Tweak Remove Topology command

339

Tweak Volume Bend

Entity bending bends a solid model around a given axis. In any bending operation, some material is stretched while other
material is compressed, but the topology of the model is maintained. The command syntax is:

Tweak {Volume|Body} <id_list> Bend Root <location_options> Axis <direction_vector> Direction
<direction_vector> Radius <val> angle <val> [Preview] [Keep] [Center_bend] [Location <options>]

Root and axis determine location for the bend. Direction determines direction of the bend. Radius and angle determine
how much to bend. Center_bend will bend both sides of the volume around the bend location instead of one side.
Location can be used to select only specific parts of a volume to bend.

Figure 1. Bending a volume

#Ex: Bend parts of a body specified by the location option
create brick width 11 height 1
create brick width 1 depth 10 height 10
create brick width 1 depth 10 height 10
create brick width 1 depth 10 height 10
move body 2 general location position -3 5 0
move body 3 general location position 0 5 0
move body 4 general location position 3 5 0
subtract body 2 from body 1
subtract body 3 from body 1
subtract body 4 from body 1
tweak volume 1 bend root 0 0 0 axis 1 0 0 direction 0 0 -1 radius 1 angle 3.14 location vertex 39 47

341

Removing Vertices

At times you may find that you have an extraneous vertex in your model. This would be a vertex connected to two and
only two edges. This stray vertex can cause unwanted mesh artifacts, due to the fact that a mesh node MUST lie on this
vertex, thereby disallowing the possibility of movement for better quality. Fortunately there is a relatively easy way of
getting rid of this stray vertex using the tweak surface command.

Tweak Surface <id> Replace With Surface <same_id>

Note that you are replacing a surface with itself. In doing so, the geometry engine will do an intersection check on that
surface, and should realize that the vertex doesn't need to be there.

343

Removing Surfaces

 Remove Sliver Surfaces

The remove surface command removes surfaces from bodies. By default, it attempts to extend the adjoining surfaces to
fill the resultant gap. This is a useful way to remove fillets and rounds and other features such as bosses not needed for
analysis. See Figure 1 for an example of this process. The syntax for this command is:

Remove Surface <id_range> [EXTEND|Noextend] [Keepsurface] [Keep] [Individual]

The noextend qualifier prevents the adjoining surfaces from being extended, leaving a gap in the body. This is sometimes
useful for repairing bad geometry - the surface can be rebuilt with surface from curves or a net surface, etc.., then
combined back onto the body.

The keep option will retain the original body and put the results of the remove surface in a new body. The keepsurface
option will retain the surface which was removed.

The individual option will remove surfaces one-by-one instead of as a group. If one removal fails, the rest are still
attempted. Without the individual option, no surface is removed unless they are all able to be removed.

This command is identical to the Tweak Surface Remove command.

Figure 1. Remove Surface Example

Remove Sliver Surface

This command uses the ACIS remove surface capability on surfaces that have area less than a specified area
limit. When ACIS removes a surface it extends the adjoining surfaces and intersects them to fill the gap. If it is not
possible to extend the surfaces or if the geometry is bad the command will fail. The syntax for this command is:

Remove Slivers Body <id_range> [EXTEND|Noextend] [Keepsurface] [Keep] [Arealimit [<double>]]

Default Arealimit = 0.1

The noextend, keepsurface and keep options operate as for the remove surface command. The arealimit option allows
the user to set the area below which surfaces will be removed.

345

Automatic Forced Sweepability

In some cases, a volume can be "forced" into a sweepable configuration by compositing surfaces on the linking surfaces.
The automatic forced sweep command will attempt to automatically composite linking surfaces together to create a
sweepable topology. This command can be useful in cases where there are many linking surfaces that prohibit
sweepability and are not needed to define the mesh. It is assumed that the user has assigned the source and target
surfaces for the sweep prior to calling this function. CUBIT will try to composite linking surfaces together to get rid of
problems such as 1) non-submappable linking surfaces, 2) interior angles between curves of a surface that deviate far
from multiples of 90 degrees, and 3) surfaces with curves smaller than the small curve size, if a small curve size is
specified. This command is incorporated into the ITEM GUI, but is also available from the command line using the
following command syntax.

Auto_clean Volume <id_range> Force_sweepability [Small_curve_size <val>]

The small_curve_size qualifier is an optional argument. If a curve size is specified, the command will try to remove
surfaces with curves smaller than this size by compositing the surface with adjacent surfaces.

Example

The following cylinder has been webcut and had surface splits so that it is not sweepable. The split surface command has
also introduced 3 small curves on the surfaces. After the source and target surfaces are set, the force sweepability
command is issued to automatically composite neighboring surfaces to make the volume sweepable and remove the
small curves. The results are shown in the image below.

auto_clean volume 1 force_sweepability small_curve_size .7

Figure 1. Linking surfaces are composited to force a sweepable volume topology

347

Automatic Small Curve Removal

The automatic small curve removal command uses composites and collapse curves commands to automatically remove
small curves from a volume. This is useful for removing small or unnecessary details from a model to facilitate meshing
algorithms. The user enters a small curve size. Any curve smaller than this specified size will be removed. This command
is issued from the ITEM toolbar. More information can be found by reading the section entitled Small Details in the Model
in the ITEM documentation. This command can also be called from the command line. The syntax of this command is:

Auto_clean Volume <id_range> Small_curves Small_curve_size <val>

Note: The automatic curve removal should be used with caution, as the user has little control over how curves are
removed.

Example:

The cylindrical model has 3 small curves just less than 0.7. The remove small curves command will remove two of the
small curves by compositing two neighboring surfaces and the third using the collapse curve functionality.

auto_clean volume 1 small_curves small_curve_size .7

Figure 1. Automatic small curve removal on a cylinder

349

Automatic Small Surface Removal

This auto clean command will attempt to remove small and narrow surfaces from the model by compositing them with
neighboring surfaces. The user specifies a small curve size value. This value is used in two different ways. First, a small
area is calculated as the small curve size squared. This value is used to compare against when looking for small surfaces.
The small curve size is also used to identify surfaces that are narrower than the small curve size.

Auto_clean Volume <id_range> Small_surfaces Small_curve_size <val>

Example

The cylindrical model has 2 small surfaces and a few narrow surfaces. The surfaces are composited to remove these.

Figure 1. Automatic small and narrow surface removal on a cylinder

351

Automatic Surface Split

This auto clean command will attempt to automatically split narrow regions of surfaces. In this context, any surface that
contains a portion that narrows down to a small angle is considered a narrow region. The command will use the split
command from the underlying solid modeling kernel. The user specifies a size that defines what it narrow. This command
also propagates the splits to neighboring narrow surfaces. This command is usually used as a preprocessor to the "tweak
remove_topology" command but can also be used on its own.

Auto_clean Volume <id_range> Split_narrow_regions Narrow_size <val>

Example

The model has a surface that necks down to a narrow region. This surface also has some neighboring narrow surfaces to
which the splits are propagated.

Figure 1. Automatic small and narrow surface removal on a cylinder

353

Regularizing Geometry

The regularize command removes unnecessary topology, which in effect reverses the imprint operation. This can help
clean up the model from extra features that are unnecessary for the geometric definition of the model. The following
command regularizes the model:

Regularize Body|Group|Surface|Curve|Vertex <range>

If you are frequently using web-cutting or other boolean operations to decompose your geometry, it may be convenient to
always generate regularized geometry. To set creation of regularized geometry during boolean operations use the
following command:

Set Boolean Regularize [ON | off]

355

Finding Surface Overlap

The surface overlap capability finds surfaces that overlap each other, with the capability to specify a distance and angle
range between them. This is useful for debugging geometry imprinting and merging problems, as well as for finding gaps
in large assembly models. Finding overlapping geometry is done using the command:

Find [Surface] Overlap [{Body|Surface|Volume} <id_list> [Filter_Sliver]

If a list of entities is not specified, all bodies in the model are checked. By default the command does not check the
surfaces within a given body against each other; rather, it only checks surfaces between bodies. This can be overridden
by inputting a surface list (i.e. find overlap surface all), or with a setting (see below).

The filter_sliver option will remove false positives from the list by weeding out sliver surfaces that have a merged curve
between them. The following pictures is an example of a sliver surface.

Figure 1. Example of a sliver surface

If curves 27 and 29 are merged before you run the find overlapping surface checkthe user will get the two surfaces in the
picture as an overlapping surface pair. However, if the filter_sliver keyword is used, Cubit will not find the two surfaces to
be overlapping.

Facetted Representation

This command works entirely off of the facetted surface representation of the model (the facetted representation is what
you see in a shaded view in the graphics). There are inherent advantages and disadvantages with this method. The
biggest advantage is avoidance of closest-point calculations with NURBS based geometry, which tends to be slow. This
method also eliminates possible problems with unhealed ACIS geometry. The disadvantage is working with a less
accurate (i.e., facetted) representation of the geometry. To circumvent problems with this facetted geometry, various
settings can be used to control the algorithm. For example, you might consider using a more accurate facetted
representation of the model - see below.

Cubit 13.2 User Documentation

356

Find Overlap Settings

Various settings are used to control the precision and handling of overlaps during the find overlap process. A listing of the
settings that find overlap uses is printed using the command:

Find [Surface] Overlap Settings

These settings, and the commands used to control them, are described below.

Facet - Absolute/Angle - The angular tolerance indicates the maximum angle between normals of adjacent surface
facets. The default angular tolerance is 15 - consider using a value of 5 . This will generate a more accurate facetted
representation of the geometry for overlap detection. This can be particularly useful if the overlap command is not finding
surface pairs as you would expect, particularly in "curvy" regions. Note however that the algorithm will run slower with
more facets. The distance tolerance means the maximum actual distance between the generated facets and the surface.
This value is by default ignored by the facetter - consider specifying a reasonable value here for more accurate results.

Set Overlap [Facet] {Angle|Absolute} <value>

Gap - Minimum/Maximum - the algorithm will search for surfaces that are within a distance from the minimum to
maximum specified. The default range is 0 to 0.01. Testing has shown this to be about right when searching for coincident
surfaces. Gaps can be found by using a range such as 3.95 to 5.05.

Set Overlap {Minimum|Maximum} Gap <value>

Angle - Minimum/Maximum - the algorithm will search for surfaces that are within this angle range of each other. The
default range is 0.0 to 5.0 degrees. Testing has shown that this range works well for most models. It is usually necessary
to have a range up to 5.0 degrees even if you are looking for coincident surfaces because of the different types of faceting
that can occur on curvy type surfaces. For example, for the case of a shaft in a hole, the facets of the shaft usually won't
be coincident with the facets of the hole, but may be offset by a certain distance circumferentially with each other. The 5
degree max angle range will account for this. If you find that the algorithm is not finding coincident surfaces when it
should, you can increase the upper range of this value. Note that this parameter is useful also for finding plates coming
together at an angle.

Set Overlap {Minimum|Maximum} Angle <value>

Normal - this setting determines whether to search for surfaces whose normals point in the same direction as each other
(same), away from each other (opposite) or either (any). The default is ANY, but it may be useful to limit this search to
opposite, as this would be the usual case for most finds.

Set Overlap Normal {ANY|opposite|same}

Tolerance - two individual facets must overlap by more than this area for a match to be found. Consider the two
cylindrical curves at the interface of the shaft and the block in Figure 2. Note that some of the facets actually overlap, even
though the curves will analytically be coincident. You can filter out false matches by increasing the overlap tolerance
area. The default value for this setting is 0.001.

Set Overlap Tolerance <value>

Figure 2. Possible false find due to overlap (tolerance will prevent finding match)

Group - the surface pairs found can optionally be placed into a group. The name of the group defaults to
"overlap_surfaces".

Set Overlap Group {on|OFF}

Finding Surface Overlap

357

List - by default the command lists out each overlapping pair - this can be turned off using the command:

Set Overlap List {ON|off}

Display - by default the command clears the graphics and displays each overlapping pair - this can be turned off using
the command:

Set Overlap Display {ON|off}

Body - by default the command will not search for overlapping pairs within bodies - only between different bodies. Turn
this setting on to search for pairs within bodies. Note however that this will slow the algorithm down.

Set Overlap [Within] {Body|Volume} {on|OFF}

Imprint - If on, Cubit will imprint the overlapping surfaces that it finds together. This will often force imprints that just
imprinting bodies together will miss. For each pair of overlapping surfaces, the containing body of one surface is imprinted
with the individual curves of the other surface, until the resulting surfaces no longer overlap.

Set Imprint {on|OFF}

359

Validating Geometry

Detailed checks of geometry and topology can be performed using the validate command:

Validate {Body|Volume|Surface|Curve|Vertex|Group} <id_range>

Validate {Volume|Surface|Curve|Vertex} <range> Mesh

The Validate {...} mesh command performs a connectivity check of the mesh elements to determine the validity of the
mesh.

More rigorous checking can be accomplished with the validate geometry commands by specifying a higher check level.
Use the following command to accomplish this:

set AcisOption Integer 'check_level' <integer>

where integer is one of the following:

10 = Fast error checks

20 = Level 10 checks plus slower error checks (default)

30 = Level 20 checks plus D-Cubed curve and surface checks

40 = Level 30 checks plus fast warning checks

50 = Level 40 checks plus slower warning checks

60 = Level 50 checks plus slow edge convexity change point checks

70 = Level 60 checks plus face/face intersection checks

You can also get more detailed output from the validate command with (the default is off):

set AcisOption Integer 'check_output' on

Note that some of the ids listed in the output of the validate command are currently meaningless, e.g. those for coedges.

The validate command can also check for consistent surface normals and return a list of offending surfaces. The syntax
for the command is as follows:

Validate [Body] <body_id> Normal [Reference [Surface] <surface_id>] [Reverse]

Using the "reference" keyword, a reference surface is compared to the normal consistency of all other specified surfaces.
Inconsistent surfaces can be reversed using the "reverse" keyword.

361

Debugging Geometry

The following command checks for inconsistencies in the CUBIT topological model, by checking the specified entities and
all child topology and/or comparing to solid model topology:

Geomdebug Validate [compare] <entity_list>

This command checks for:

 Consistent CoFace senses

 Loops are closed/complete

 Consistent CoEdge senses

 Correct vertex order on curves w.r.t. parameterization

 Correct tangent direction of curves w.r.t. parameterization

Related Commands:

Geomdebug Vertex <vertex_id>

Geomdebug Curve <curve_id>

Geomdebug Surface <surface_id>

Geomdebug body <body_id>

Geomdebug Containment {Curve | Surface} <id> {Location (options) | Node <id_list>}

The following command prints info about GeometryEntities owned by specified entity:

Geomdebug Geometry <entity_list> [interval <n>] [index <n>] [TEXT] [GRAPHIC] [attributes]

The following command lists (TopologyBridge) topology for specified entity:

Geomdebug solidmodel <entity_list> [index <n>] [depth<n>|up<n>|down<n>]

The following command lists GroupingEntities.

Geomdebug GPE <entity_list>

363

Geometry Accuracy

The accuracy setting of the ACIS solid model geometry can be controlled using the following command:

[set] Geometry Accuracy <value = 1e-6>

Some operations like imprinting can be more successful with a lower accuracy setting (i.e., 0.1 to 1e-5). However, it is not
recommended to change this value. Be sure to set it back to 1e-6 before exporting the model or doing other
operations as a higher setting can corrupt your geometry.

365

Trimming and Extending Curves

Curves can be trimmed or extended with the following command:

Trim Curve <id> AtIntersection {Curve|Vertex <id>} Keepside Vertex <id> [near]

Curves can be trimmed or extended where they intersect with another curve or at a vertex location. When trimming to
another curve, the curves must physically intersect unless they both are straight lines in which case the near option is
available. With the near option the closest intersection point is used to the other line - so it is possible to trim to a curve
that lies in a different plane. When trimming to a vertex, if the vertex does not lie on the curve, it is projected to the closest
location on the curve or an extension of the curve if possible.

The Keepside vertex is needed to determine which side of the curve to keep and which side to throw away. This vertex
need not be one of the curve's vertices, nor does it need to lie on the curve. However, if it is not on the curve it will be
projected to the curve and that location will determine which side of the curve to keep.

If the curve is part of a body or surface, it is simply copied first before trimming/extending. If it is a free curve a new curve
is created and the old curve is removed. The figures below show several examples of trimming/extending curves.

Trimming a Curve

Figure 1. Trimming a Curve to an Intersecting Curve

Figure 2. Trimming a Curve to a Non-Intersecting Curve Using the Near Option

Cubit 13.2 User Documentation

366

Figure 3. Trimming a Curve to a Vertex

Extending a Curve

Figure 4. Extending a Curve to An Intersecting Curve

Figure 5. Extending a Curve to a Non-Intersecting Vertex Using the Near Option

367

Stitching Sheet Bodies

The stitch command stitches together the specified sheet bodies into either a larger sheet body or a solid volume(s). The
tolerance value can be used when these sheet bodies don't line up exactly along the edges. This is common for IGES and
STEP models. Only manifold stitching is performed, i.e., edges will be shared with no more than two surfaces.

Stitch {Body|Volume} <id_range> [Tolerance <value>] [No_tighten_gaps]

This command has three stages to it:

1. Stitch the surfaces together along overlapping edges Normally IGES and some STEP files do not contain
topological information that links surfaces together to share bounding curves. Stitching is an operation that
builds up this topological information.

2. Simplify geometry The command replaces splines with analytics where possible.
3. Tighten up gaps (inaccuracies) between the sheet bodies The command will build the geometry necessary

to tighten the gaps in the model.

When the stitch operation completes, a print statement lets the user know if the resulting body is not a closed, solid body.

If the no_tighten_gaps option is included, the third step of the stitching process is excluded. This may be necessary in
very large or complex models, where the regular approach fails.

369

Imprinting Geometry

To produce a non-manifold geometry model from a manifold geometry, coincident surfaces must be merged together (See
Geometry Merging); this merge can only take place if the surfaces to be merged have like topology and geometry. While
various parts of an assembly will typically have surfaces, which coincide geometrically, an imprint is necessary to make
the surfaces have like topology. There are three types of imprinting:

 Regular Imprinting

 Tolerant Imprinting

 Mesh-Based Imprinting

To preview which surfaces can or should be imprinted, or to force imprints that the regular imprint command misses, the
Find Overlap command can be used.

Regular Imprinting

The commands used to imprint bodies together are:

Imprint [Volume|BODY] <range> [with [Volume|BODY] <range>] [Keep]

A body can also be imprinted with curves, vertices or positions, and surfaces can be imprinted with curves. It is useful to
imprint bodies or surfaces with curves to eliminate mesh skew, generate more favorable surfaces for meshing, or create
hard lines for paving. Imprinting with a vertex or position can be useful to split curves for better control of the mesh or to
create hard points for paving.

Imprint Body <body_id_range> [with] Curve <curve_id_range> [Keep]

Imprint Body <body_id_range> [with] Vertex <vertex_id_range> [Keep]

Imprint {Volume|Body} [with] Position <coords> [position <coords> ...]

Imprint Surface <surface_id_range> [with] Curve <curve_id_range> [Keep]

An Imprint All will imprint all bodies in the model pairwise; bounding boxes are used to filter out imprint calls for bodies
which clearly don't intersect.

Imprint [Body] All

Tolerant Imprinting

Normal imprinting may be ineffective for some assembly models that have tolerance problems, generating unwanted
sliver entities or missing imprints altogether. Tolerant imprinting is useful for dealing with these tolerance challenged
assemblies. To determine coincident and overlap entities, tolerant imprinting uses the merge tolerance. A limitation of
tolerant imprinting is that it cannot imprint intersecting surfaces onto one another, as normal imprinting can. Tolerant
imprinting imprints only overlapping entities onto one other.

Imprint Tolerant {Body|Volume} <range>

Tolerant imprinting can also be used to imprint curves onto surfaces, provided that the tolerance between surface and
curve(s) falls within the merge tolerance. The 'merge' option will merge the owning volume of the specified surface with all
other volumes that share any curves with this surface.

Imprint Tolerant Surface <id> with Curve <id_range> [merge]

Imprint Tolerant Surface <id> <id> with Curve <id_range> [merge]

The second form of the command imprints the specified bounding curves of one surface onto another surface and vice
versa. Any specified curves that are not bounding either of the two specified surfaces will not be imprinted. The 'merge'
option will merge all the volumes sharing any curve of these two surfaces, after the imprint.

Cubit 13.2 User Documentation

370

It is recommended that normal imprinting be used when possible and tolerant imprinting be used only when normal
imprinting fails.

Mesh-Based Imprinting

Another form of the imprint command,

Imprint Mesh {Body | Volume} <id_list>

uses coincident mesh entities and virtual geometry to create imprints. See the Partitioned Geometry section for more
information on this command.

Imprint Settings

After imprint operations, an effort is made to remove sliver entities: sliver curves and surfaces. Previously, all curves in
participating bodies less than 0.001 were removed. Newer versions of Cubit changed this because there might be times
when the user wants sliver curves/surfaces to be generated during an imprint operation. In order to give the user more
control over the cleanup of these sliver entities after imprint operations, a command was implemented so that the user can
set an 'imprint sliver cleanup tolerance'. The default tolerance for curves is the merge tolerance 0.0005. The default
tolerance for surfaces is a suitable tolerance chosen internally based on the bounding box of the entity. Sliver surfaces are
removed whose maximum gap distance among the long edges is smaller than the tolerance and who have at most three
long edges. A long edge is an edge whose length is greater than the specified tolerance.

Set {Curve|Surface} Imprint Cleanup Tolerance <value>

371

Merging Geometry

The steps of the geometry merging algorithm used in CUBIT are outlined below:

1. Check lower order geometry, merge if possible
2. Check topology of current entities
3. Check geometry of current entities
4. If both entities are meshed, check topology of meshes.
5. If geometric topology, geometry, and mesh topology are alike, merge.

Thus, in order for two entities to merge, the entities must correspond geometrically and topologically, and if both are
meshed must have topologically equivalent meshes. The geometric correspondence usually comes from constructing the
model that way. The topological correspondence can come from that process as well, but also can be accomplished in
CUBIT using Imprinting.

If both entities are meshed, they can only be merged if the meshes are topologically identical. This means that the entities
must have the same number of each kind of mesh entity, and those mesh entities must be connected in the same way.
The mesh on each entity need not have nodes in identical positions. If the node positions are not identical, the position of
the nodes on the entity with the lowest ID will be used in the resulting merged mesh.

There are several options for merging geometry in CUBIT.

Merge geometry automatically

Merge All [Group|Body|Surface|Curve|Vertex] [group_results][tolerance <value>]

All topological entities in the model or in the specified bodies are examined for geometric and topological correspondence,
and are merged if they pass the test.

If a specific entity type is specified with the Merge all, only complete entities of that type are merged. For example, if
Merge all surface is entered, only vertices which are part of corresponding surfaces being merged; vertices which
correspond but which are not part of corresponding surfaces will not be merged. This command can be used to speed up
the merging process for large models, but should be used with caution as it can hide problems with the geometry.

Test for merging in a specified group of geometry

Merge {Group|Body|Surface|Curve|Vertex} <id_range>[With {Group|Body|Surface|Curve|Vertex}
<id_range>][group_results][tolerance<value>]

All topological entities in the specified entity list, as well as lower order topology belonging to those entities, are examined
for merging. This command can be used to prevent merging of entities which correspond and would otherwise be merged,
e.g. slide surfaces.

Force merge specified geometry entities

Merge Vertex <id> with Vertex <id> Force

Merge Curve <id> with Curve <id> Force

Merge Surface <id> with Surface <id> Force

This command results in the specified entities being merged, whether they pass the geometric correspondence test or
not. This command should only be used with caution and when merging otherwise fails; instances where this is required
should be reported to the CUBIT development team.

Preventing geometry from merging

Body <id_range> Merge [On | Off]

Volume <id_range> Merge [On | Off]

Cubit 13.2 User Documentation

372

Surface <id_range> Merge [On | Off]

Curve <id_range> Merge [On | Off]

Vertex <id_range> Merge [On | Off]

These commands provide a method for preventing entities from merging. If merging is set to off for an entity, merging
commands (e.g. "merge all") will not merge that entity with any other.

Other Merge Commands

Set Merge Test BBox {on|OFF}

This is an additional test for merging to see if a pair of surfaces should merge. First, it creates a bounding box for each
surface by summing individual bounding boxes of each of the surface's curves. A comparison is then made to see if these
two bounding boxes are within tolerance. This can help to weed out any potential incorrect merges that can result from
non-tight bounding boxes.

Set Merge Test InternalSurf {on|OFF|spline}

This is an extra check when merging surfaces. A point on one surface, closest to its centroid is found. Another point,
closest to this point is found on the other surface. If these two points are not within merge tolerance, the two surfaces will
not be merged. If set to on, all surface types will be included in this check. If set with the spline option, then splines are
only checked this way; analytic surfaces are excluded. This is another check to prevent incorrect merges from occurring.

373

Examining Merged Entities

There are several mechanisms for examining which entities have been merged. The most useful mechanism is assigning
all merged or unmerged entities of a specified type to a group, and examining that group graphically. This process can be
used to examine the outer shell of an assembly of volumes, for example to verify if all interior surfaces have been merged.
To put all the merged or unmerged entities of a given type into a specified group, use the command:

Group {<`name'>|<id>} [Surface | Curve | Vertex] [Merged | Unmerged]

If the entity type is unspecified, surfaces will be assumed.

Entities can also be labeled in the graphics according to the state of their merge flag. See the Preventing geometry from
merging section for information on controlling the merge flag. To turn merge labeling on for a specified entity type, use the
command

Label {Vertex | Curve | Surface} Merge

375

Merge Tolerance

Geometric correspondence between entities is judged according to a specified absolute numerical tolerance. The
particular kind of spatial check depends on the type of entity. Vertices are compared by comparing their spatial position;
curves are tested geometrically by testing points 1/3 and 2/3 down the curve in terms of parameter value; surfaces are
tested at several pre-determined points on the surface. In all cases, spatial checks are done comparing a given position
on one entity with the closest point on the other entity. This allows merging of entities which correspond spatially but
which have different parameterizations.

The default absolute merge tolerance used in CUBIT is 5.0e-4. This means that points which are at least this close will
pass the geometric correspondence test used for merging. The user may change this value using the following command:

Merge Tolerance <val>

If the user does not enter a value, the current merge tolerance value will be printed to the screen. There is no upper
bound to the merge tolerance, although in experience there are few cases where the merge tolerance has needed to be
adjusted upward. The lower bound on the tolerance, which is tied to the accuracy of the solid modeling engine in CUBIT,
is 1e-6.

Finding Nearly Coincident Entities

These commands find vertex-vertex, vertex-curve and vertex-surface pairs whose separation is within the specified
tolerance range. If a tolerance range isn't specified the default will be from merge tolerance to 10*merge tolerance. It is
useful for determining if you need to expand merge tolerance to accomodate sloppy geometry.

Find Near Coincident Vertex Vertex {Body|Volume} <id_range> [low_tol <value>] [high_tol <value>]

Find Near Coincident Vertex Curve {Body|Volume} <id_range> [low_tol <value>] [high_tol <value>]

Find Near Coincident Vertex Surface {Body|Volume} <id_range> [low_tol <value>] [high_tol <value>]

377

Unmerging

The unmerge command is used to reverse the merging operation. This is often in cases where further geometry
decomposition must be done.

Unmerge {all|<entity_list> [only]}

Un-merging an entity means that the specified geometric entity and all lower-order (or child) entities will no longer share
non-manifold topology with any other entities. For example, if a body is unmerged, that body will no longer share any
surfaces, curves, or vertices with any other body.

[Set] Unmerge Duplicate_mesh {On|OFF}

If any meshed geometry is unmerged, the mesh is kept as necessary to keep the mesh of higher-order entities valid. For
example, if a surface shared by two volumes is to be unmerged and only one of the volumes is meshed, the surface mesh
will remain with whichever surface is part of the meshed volume.

When unmerging meshed entities, the default behavior of the code is that the placement if the mesh is determined by the
following rules:

 If neither entity has meshed parent entities, the mesh is kept on one of the two entities.

 If one entity has a meshed parent entity, the mesh is kept on
that entity.

 If both entities have meshed parents, the mesh is kept on one
and copied on the other.

If unmerge duplicate_mesh is turned on, the rules described above are overwritten and whenever a meshed entity is
unmerged the mesh is always copied such that both entities remain meshed.

To get back to the default behavior, turn unmerge duplicate_mesh off.

379

Using Geometry Merging to Verify Geometry

Geometry merging is often used to verify the correctness of an assembly of volumes. For example, groups of unmerged
surfaces can be used to verify the outer shell of the assembly (see Examining Merged Entities.) There is other information
that comes from the Merge all command that is useful for verifying geometry.

In typical geometric models, vertices and curves which get merged will usually be part of surfaces containing them which
get merged. So, if a Merge all command is used and the command reports that vertices and curves have been merged,
this is usually an indication of a problem with geometry. In particular, it is often a sign that there are overlapping bodies in
the model. The second most common problem indicated by merging curves and vertices is that the merge tolerance is set
too high for a given model. In any event, merged vertices and curves should be examined closely.

381

Composite Curves

The full command for the creation of composite curves is:

Composite Create Curve <id_range> [Keep Vertex <id_list>] [Angle <degrees>]

The additional arguments provide two methods to prevent vertices from being removed from the model or composited
over. The first method, keep vertex explicitly specifies vertices which are not to be removed. This option can also be used
to control which vertex is kept when compositing a set of curves results in a closed curve.

The angle option specifies vertices to keep by the angle between the tangents of the curves at that vertex. A value less
than zero will result in no composite curves being created. A value of 180 or greater will result in all possible composites
being created. The default behavior is an empty list of vertices to keep, and an angle of 180 degrees.

383

Composite Surfaces

The general command for composite surface creation is:

Composite Create Surface <id_range> [Angle <degrees>] [Nocurves] [Keep [Angle <degrees>]
[Vertex <id_list>]]

Related Commands

Graphics Composite {on|off}

The angle argument prevents curves from being removed from the model or composited over. Composites will not be
generated where the angle between surface normals adjacent to the curve is greater than the specified angle.

When a composite surface is created, the default behavior is to also to composite curves on the boundary of the new
composite surface.

Curves are automatically composited if the angle between tangents at the common vertex is less than 15 degrees. The
nocurves option can be used to prevent any composite curves from being created.

The keep keyword can be used to change the default choice of which curves to composite. The arguments following the
keep keyword behave the same as for explicit composite curve creation. The nocurves and keep arguments are mutually
exclusive.

Controlling the Surface Evaluation Method for Composite
Surfaces

It typically takes longer to mesh a single composite surface than to mesh the surfaces used in the creation of the
composite. To improve speed, composite surfaces use an approximation method to evaluate the closest point to a
trimmed surface. However, this evaluation method may give poor results for composites of highly convoluted surfaces.

The virtual geometry module provides a way to change the way surfaces are evaluated using the following command:

Composite Closest_pt Surface <id> {Gme|Emulate}

The default behavior is to use the emulate method, as it is typically considerably faster. Specifying the gme option will
force the specified composite surface to use the exact calculation of the closest point to a trimmed surface, as provided by
the solid modeler. The gme option, however, can be considerably slower.

Composite Determination

The composite create surface command is non-deterministic in some circumstances. When three or more adjacent
surfaces are to be composited, all the surfaces may not be able to be composited into a single surface as illustrated in
Figure 1. In this case different subsets of the surfaces may be composited and the command will choose arbitrary subsets
to composite. As an example, there are three surfaces A, B, and C, all adjacent to each other. The common curve
between A and B is AB, the common curve between B and C is BC, and the common curve between A and C is CA. If the
curve BC cannot be removed, either due to the angle specified in the composite command, or because there is a fourth
surface, D, also using that curve, the command will arbitrarily choose to either composite A and B or A and C.

Cubit 13.2 User Documentation

384

Figure 1. In some cases, the program will make a determination of which surfaces to composite.

385

Partitioned Curves

There are four methods for specifying locations at which to partition curves:

Partition Create Curve <curve_id> {Fraction <fraction_list> | Position <xpos> <ypos> <zpos> | [with]
<vertex_list> | <node_list> }

The first two forms of the command create additional vertices and use those vertices to split a curve. The third form of the
command uses existing vertices to split the curve. The fourth form of the command uses existing nodes to split the curve.

Using the fraction option, vertices are created at the specified fractions along the curve (in the range [0,1].)
Subsequently, the curve is split at each vertex, resulting in n+1 new curves, where n is the number of fraction values
specified.

Using the position option, vertices are created at the closest location along the curve to each of the specified position.
Subsequently, the curve is split at each vertex, resulting in n+1 new curves, where n is the number of positions specified.

If the node option is used, meshed curves may be partitioned. The specified nodes must lie on the curve to be partitioned.
The curve is split at each node specified, and any other mesh entities are divided appropriately amongst the curve
partitions.

387

Partitioned Surfaces

There are several forms of the command to partition a surface. A surface may be partitioned using hard points, curves,
polylines, mesh edges, mesh faces or mesh triangles.

 Partitioning with Vertices or Nodes

 Partitioning with Curves

 Partitioning with Mesh Edges

 Partitioning with Mesh Faces or Triangles

Partitioning with Vertices and Nodes

Partitioning with Hard Points

There are two methods of partitioning a surface using vertices and nodes. The first method is to create a set of hard
points using nodes, vertices, or coordinates that constrain the mesh to particular points on the surface. The syntax is:

Partition Create Surface <id> Vertex <id_list> [Individual]

Partition Create Surface <id> Node <id_list> [Individual]

Partitioning with Polylines

The second method is to define a polyline using a set of vertices or coordinates. This method splits the surface using a
polyline defined by the a list of positions specified as either coordinate triples, or existing vertices. The polyline is
projected to the surface to define the curve for splitting the surface. If only one position is specified a zero-length curve
with a single vertex will be created The syntax is identical to above WITHOUT the individual option.

Partition Create Surface <id> Vertex <id_list>

Partition Create Surface <id> Position <x> <y> <z> [[Position] <x> <y> <z> ...]

In the following simple example, the surface is partitioned using both methods. On the left half of the object, the surface is
partitioned using the individual option (vertices 11 12 15 13). On the right half, a polyline is used (vertices 9 10 16 14). All
of the free vertices can then be deleted, leaving the virtual curves shown in the second picture. Vertices 19 20 21 and 22
are all zero-length curves. The small 'v' in parentheses is to indicate that it is virtual geometry. The resulting mesh is
shown in the third picture. Notice that the polyline constrains the entire curve to the mesh, while the hardpoints constrain
only that individual point.

Cubit 13.2 User Documentation

388

Figure 1. Partitioning a Surface Using Vertices

Partitioning with Curves

This form of the command splits the existing surface into several surfaces by creating curves that approximate the
projection of the specified existing curves onto the surface. The syntax is:

Partition Create Surface <id> Curve <id_list>

Partitioning with Mesh Edges

Meshed surfaces may be partitioned with mesh edges. The specified mesh edges must be owned by the surface to be
partitioned. The shape of the curve(s) used to split the surface is specified by a set of mesh edges.

If the split location is specified by a series of mesh edges, and the specified mesh edges form a closed loop, the node
option may be used to control which node the vertex is created at.

Partition Create Surface <id> Edge <id_list> [Node <node_id>]

Partitioning with Faces or Triangles

Surfaces may also be partitioned by specifying a list of triangles or faces (quads). The boundary of the list will
automatically be detected and new curves and vertices created at the appropriate locations. Curves are created from the
mesh edges and used to split the surface. The surface mesh is split and assigned to the appropriate surface partitions.

Partition Create Surface <id> Face|Tri <id_list>

389

Partitioned Volumes

To partition a volume by giving a center and radius:

Partition Create Volume <id> Center [Location] {options} Radius <val>

This command splits the existing volume into two volumes. All volume elements that lie within the specified radius of the
specified center location are identified, and the exterior faces of these elements are used to create a surface and partition
the volume. The center can be specified with any of the location options.

Figure 1 shows an example of a partitioned volume. A cube that has been map meshed is partitioned using a center at
one of its vertices. The result is two distinct volumes with a surface separating the two. The interface surface is composed
of the faces of the interior hex elements.

Figure 1. A partitioned volume

This command may be useful for separating small regions of a meshed volume so that remeshing or mesh improvement
may be performed locally.

391

Using Mesh Intersections to Partition Surfaces

To assist in various mesh editing tasks such as joining, a mesh-based imprinting capability is provided. The command

Imprint Mesh {Body | Volume} <id_list>

determines imprint locations using the mesh on the surfaces of the specified bodies or volumes. Regions of coincidence
between the surfaces is determined by searching for coincident nodes in the mesh of the surfaces. Virtual geometry is
then used to partition the surfaces and curves at the boundary of these regions of coincident mesh.

The imprint mesh functionality differs from a normal geometric imprint in the following ways:

 The location of the imprint is determined from coincidence of mesh nodes.

 The mesh remains intact through the imprint operation.

 Virtual geometry is used to create the imprint.

 The imprinting can be done on all types of geometry (including mesh-based geometry, merged geometry, and
virtual geometry.)

The following is a trivial example of this capability. The following commands create two meshed blocks:

brick width 10
brick width 6
body 2 move x 8
volume 1 2 size 1
mesh volume 1 2

Figure 1 shows the results of these commands.

Figure 1. Two adjacent meshed volumes. The coincident meshes will form the basis of the imprint operation.

The mesh of the blocks can be joined by first doing a mesh-based imprint and then merging:

imprint mesh body 1 2
merge body 1 2

Figure 2. shows the results of the imprint operation. A meshed surface is created at the interface between the two meshed
volumes. The nodes on the new surface are shared by the neighboring hexahedra of both volumes.

Cubit 13.2 User Documentation

392

Figure 2. The imprinted surface. Adjacent volume meshes joined at the interface surface.

393

Removing Partitions

There are two commands used to remove partitions:

Partition Merge {Curve|Surface|Volume} <id_list>

The command combines existing partitions where possible. This command is similar to the composite create command.
The difference is that this command is special-cased for partitions, and will result in more efficient geometric evaluations.
If all the partitions of a real solid model entity are merged, such that there is only one partition remaining, the virtual
geometry will be removed, and the original solid model geometry will be restored to the model.

The CUBIT delete command can also be used for removing partitions. See Deleting Virtual Geometry for a description of
its use.

395

Collapse Angle

The collapse command allows the user to collapse small angles using virtual geometry. The command syntax is:

Collapse Angle at Vertex <id> Curve <id1> [Arc_length1 <length>] Curve <id2> [Arc_length2
<length> | Same_size | Perpendicular | Tangent] [Composite_vertex <angle>] [Preview]

The collapse angle command is used to eliminate small angles at vertices, where curves meet at a tangential point. The
command will split each curve at a specified distance (δ1 and δ2) as shown in Figure 1, and create two new vertices
along those curves. The remaining small angle will be composited into its neighboring surface using virtual geometry. The
options of the command allow you to specify where to split each curve. You must input a distance for the first curve (δ1),
but the second location can be determined based on the length and direction of the first curve.

Figure 1. Collapse angle syntax

The arclength option will split each curve at a specified distance δ1 and δ2, (See Figure 1) measured from the vertex.
You must input at least one arclength for each of the options listed below.

The same_size option will split curve 2 so that the two resulting curves, δ1 and δ2, are the same length as shown in
Figure 2.

Figure 2. Collapse angle using the same_size option

The perpendicular option will split curve 2 so it is perpendicular to the split location on curve 1, as shown in Figure 3.

Cubit 13.2 User Documentation

396

Figure 3. Collapse angle using the perpendicular option

The tangent option will split curve 2 where a line tangent to curve 1 at the split location intersects curve 2, as shown in
Figure 4.

Figure 4. Collapse angle using the tangent option

The composite_vertex option automatically composites resulting surfaces if there are only two curves left at the vertex,
and the angle is less than a specified tolerance.

The preview option will preview composited surface before applying changes.

Figure 5. An example of a meshed surface that is generated after using the collapse angle command.

Collapse Angle

397

399

Collapse Curve

The collapse curve command allows the user to collapse small curves using virtual geometry. It is intended to be used in
cases where removing a small curve to simplify topology will facilitate meshing. The operation can be thought of as
reconnecting curves from one vertex on the small curve to the other vertex. If the user doesn’t specify which vertex to
keep during the operation CUBIT will choose one of the vertices. The operation is performed using virtual partitions and
composites on the curves and surfaces surrounding the small curve. The command syntax is:

Collapse Curve <id> [Vertex <id>] [Ignore] [Real_split]

The vertex keyword allows the user to specify which vertex on the small curve to keep during the operation or in other
words which vertex to "collapse to". Depending on the surrounding topological configuration some vertices cannot
currently be chosen so if the user specifies a vertex to collapse to that results in a complex topological configuration that
CUBIT can’t currently handle the user will be notified and encouraged to pick a different vertex. If the user doesn’t specify
a vertex CUBIT will attempt to choose the “best” vertex to keep based on surrounding topology and geometry. Currently,
the collapse curve command only handles curves where the vertex that is NOT retained has a valence of 3 or 4.

The ignore keyword allows the user to specify whether or not small portions of surfaces that are partitioned off of one
surface and composited with a neighboring surface during the collapse curve operation are considered when evaluating
the new composite surface. By specifying the ignore option the user tells CUBIT that these small surfaces will be ignored
in future evaluations of the composite surface. This can be beneficial in cases where the small surface makes a sharp
angle with the neighboring surface it is being composited with. These first derivative discontinuities of composite surfaces
can make it difficult for the meshing algorithms to proceed and ignoring the small surfaces during evaluation can help
remedy this problem. By default the small surfaces will not be ignored.

The real_split option tells CUBIT to use the solid modeling kernel's (ACIS) split surface functionality to do the splitting
rather than using virtual partitioning. The result is that you only have virtual composites at the end and no virtual partitions.
The main advantage of using this option is that the solid modeling kernel's split operation is often more reliable than the
virtual partition.

Figure 1 shows a typical example where the collapse curve command should be used to simplify the topology for
meshing.

Figure 1. Example where the collapse curve operation is needed.

Figure 2 shows the above example after collapsing the small curve

Cubit 13.2 User Documentation

400

Figure 2. Above example after collapsing the small curve.

401

Collapse Surface

The collapse surface command allows the user to remove surface boundaries from the model. This is accomplished by
splitting the surface at two given locations and combining it into two adjacent surfaces using virtual geometry operations.
The command syntax is:

Collapse Surface <id> Across Location1 Location 2 With Surface <id_list> [Preview]

The locations option can use any of the general Cubit location commands. However, the vertex and curve options are
among the most useful location options. For example, the command

collapse surface 15 across vertex 128 curve 40 with surface 26 117

would split surface 15 by the line that is formed between vertex 128 and the midpoint of curve 40. It would then composite
the two parts of surface 15 that are adjacent to surfaces 26 and 117. The result is that three surfaces have been reduced
to two.

The collapse surface command is most useful in removing blended surfaces (i.e. fillets and chamfers) from a model. For
example, Figure 1 below shows a set of highlighted surfaces on a bracket. By collapsing all these surfaces the model
shown in Figure 2 is created. Collapsing the surfaces for this model simplifies the model and allows for the creation of a
higher quality mesh.

Figure 1. Bracket with chamfered edges.

Cubit 13.2 User Documentation

402

Figure 2. Bracket after highlighted edges have been collapsed

403

Simplify Geometry

Simplifying topology by compositing individually selected surfaces is often a tedious and time-consuming task. The
simplify command addresses the tedium by automatically compositing surfaces and curves based on selected criteria
between neighboring entities. Figure 1 shows a typical example of simplify command usage (‘simplify volume 1 angle 15’).

Figure 1. Typical Simplify command usage

The command syntax and discussion items are shown below.

Simplify {Volume|Surface|Curve} <range> [Angle< value >] [Respect {Surface <id_range> | Curve
<id_range> | Vertex <id_range>| Imprint | Fillet}] [Local_Normals] [Preview]

Cubit 13.2 User Documentation

404

Feature Angle

Feature angle is defined as the angle between the average facet normals of two neighboring surfaces. If the angle is less
than the specified angle then the two surfaces are composited together (assuming any other specified criteria are met).
Feature angle is always used as criteria and if an angle is not specified the value is set to 15 degrees.

Automatically Compositing Curves

The simplify command can also be used to automatically composite curves using an angle tolerance. Curves will be
composited together only if they are explicitly specified in this command, and not as the result of two surfaces being
composited.

Respecting Vertices, Curves and Surfaces

Surfaces, curves, and vertices can be specified to prevent geometry features from automatically being composited. Figure
2 show an example of respecting a surface (‘simplify vol 1 angle 15 respect surf 289’).

Figure 2 Respecting a surface

For complex geometries, it is often useful to preview the simplify command and then add any respected geometry to the
command respect lists.

Respecting Imprints

Curves created by imprints can automatically be respected by the simplify command. Figure 3 shows an example of
geometry with split fillets.

Figure 3 Respecting imprint geometry

Notice that in the split curves are respected by the Simplify command (‘simplify vol 1 angle 40 respect imprint’).

Simplify Geometry

405

Using Local Normals

By default the command will compare the average normal of two adjacent surfaces to determine whether they should be
composited. By issuing the local_normal option, the test will be modifed slightly. The modified test will compare the
maximum difference between normals along the shared curve(s) for the two surfaces.

Figure 4. Comparison of surface normals using the average surface normal method (on the left) and local normal
method (on the right).

Other Options

The preview option shows what curves are respected without compositing any surfaces. It should also be pointed out that
multiple respect specifications can be chained together. For example:

Simplify volume 1 angle 15 respect curve 1 respect imprint respect fillet preview

407

Deleting Virtual Geometry

Removing Virtual Geometry

The following command removes all lower-order virtual geometry from the specified entities.

Virtual Remove <entity_list>

Examples:

virtual remove surface 5

Removes all composite and partition curves from surface 5.

virtual remove body all

Remove all virtual geometry from all bodies.

For removing individual virtual entities, see the sections of the documentation for each type of virtual entity:

 Composite curves

 Composite surfaces

 Partition curves

 Partition surfaces

Using The Delete Command With Composites

If the general delete command is invoked for a composite surface, the composite surface will be removed, and the
original surfaces used to define the composite will be restored to the model. The defining surfaces are NOT also deleted.
As with any other non-virtual surfaces, the delete command will fail if the composite has a parent volume.

To delete composite surfaces with a parent volume, the composite delete command can be used. The behavior is
analogous for composite curves.

If the delete command is used on a volume containing a composite surface or curve, or on a surface containing a
composite curve, the entire volume or surface will be deleted, including the original entities used to define the composite,
as those entities are also children of the entity being deleted.

Using the Delete Command With Partitions

It is recommended that the delete command not be used with partitions, as it may break subsequent usage of the merge
and delete forms of the partition command for other partitions of the same real geometry entity. However, if the delete
command is used for partitions, the behavior is to delete the specified partition, and when the last partition of the real
geometry is deleted, to restore the original geometry.

The delete command can also be used on parents of partitions. For example, a volume containing partitioned surfaces, or
a surface containing partitioned curves can be deleted. In this case, the specified entity will be deleted along with all of its
children, including the partition entities, and the original entities that were partitioned.

409

Geometry Orientation

The orientation of surface and curve geometry is the direction of the normal and tangent vectors respectively.

Each surface has a forward (or top) side. The evaluation of the surface normal at any point on the surface will return a
vector at that point, orthogonal to the surface and directed towards the forward side of the surface. The mesh faces
generated on each surface will have the same normal direction as their owning surface.

Each curve has a forward direction and a corresponding start and end vertex. The direction of the curve is from start to
end vertex. The evaluation of the tangent vector of the curve at any point along the curve will result in a vector that is both
tangent to the curve and pointing in the forward direction of the curve (towards the end vertex along the path of the curve.)
The mesh edges created on each curve will be oriented in the same direction as their owning curve. The exported nodes
and edges of a curve mesh will be written in the order they occur along the path of the curve.

Higher-dimension geometry has uses lower-dimension geometry with an associated sense (forward or reversed) for each
lower-dimension entity. For example, a volume as a sense for each surface used to bound the volume. If the surface
normal points outside the volume, then the volume uses the surface with a forward sense. If the surface normal points into
the interior of the volume, the volume uses the surface with a reversed sense. Similarly a surface is bounded by a set of
curves forming a loop such that the direction of the loop and the sense of each curve results in a cycle that is counter-
clockwise around the surface normal.

Adjusting Orientation

By default, a surface is oriented so that its normal points OUT of the volume of which it is a part. For a merged surface (a
surface which belongs to more than one volume) or a free surface (a surface that belongs to no volume, also known as a
sheet body), the orientation of the surface is arbitrary. The orientation of a surface influences the orientation of any
elements created on that surface. All surface elements have the same orientation as the surface on which they are
created. The following commands are available to adjust the normal-direction for a surface:

Surface <id_range> Normal Opposite

Surface <id_range> Normal Volume <id>

The orientation of a surface can be flipped from its current orientation by using the "Opposite" keyword. The orientation of
a merged surface can be set to point OUT of a specific volume by specifying that volume in the "Volume" keyword.

Occasionally, volumes will be created "inside-out". The command:

Reverse {Body|Volume} <body_id_range>

will turn a give volume or body inside out. This should be equivalent to reversing the normals on all the surfaces. This
shouldn't be encountered very often, as it is a very rare condition.

The following commands are available to adjust the tangent direction of a curve:

Curve <id_range> Tangent Opposite

Curve <id_range> Tangent {Forward|Reverse} Surface <id>

Curve <id_range> Tangent {Start|End} Vertex <id>

The first command reverses the tangent direction of the curve. The second command sets the tangent direction such that
it is used by a specific surface with a specified sense. The third command sets the tangent direction of the curve such that
the curve starts or ends with the specified vertex. For the latter two forms of the command, the curve must be adjacent to
the specified surface or vertex.

The below command can be used to change the orientation of multiple curves at once. With the direction option, the curve
will be oriented along the specified direction. With the location option, the vertex closest to the give location becomes the
start vert in the oriented curve. The curve orientation can be reversed using the opposite argument. Also, a vertex id can
be specified to make it the start vertex in the oriented curve.

Curve <id_range> Orient Sense {direction (options)|location (options)|vertex <id_range>} [Opposite]

Cubit 13.2 User Documentation

410

The above command is useful in changing the orientation of multiple curves at once using various options described. This
becomes helpful, e.g., when bias is applied on multiple curves. By default, bias depends on the orientation of the curve,
i.e., bias begins at start vertex.

411

Basic Group Operations

Geometry Groups

The command syntax to create or modify a group is:

Group ["name" | <id>] Add <list of topology entities>

For example, the command,

group "exterior" add surface 1 to 2, curve 3 to 5

will create the group named Exterior consisting of the listed topological entities. Any of the commands that can be applied
to the "regular" topological entities can also be applied to groups. For example, mesh Exterior , list Exterior , or draw
Exterior .

Elements may specified by name as well. For example, the command

group 'interior' add surface name 'bill' 'john' 'fred'

will add the surfaces named 'bill' 'john' and 'fred' to the group 'interior'. A topological entity can be removed from a group
using the command:

Group ["name" | <id>] Remove <entity list>

The Xor operation can also be performed on entities in group. Xor means if an entity is already in the group, the command
will delete this entity from the group. If it is not in the group, the entity is then added to the group.

Group ["name" | <id>] Xor <entity list>

The Equals operation assigns the group to be exactly the same as the list given. All other existing members of the group
will be removed.

Group ["name" | <id>] Equals <entity list>

Modifying groups by comparing common entities

The Common_To operation looks for geometry entities that are related to the input elements, either as parents or children.
For example, specifying all curves common to two surfaces will give all of the curves that are attached to both of the
specified surfaces. The elements must be specified by name (specifying by id will not work), and the name must be
enclosed in single quotation marks. This option works for all of the group operators given above. The command syntax is:

Group ["name" | <id>] {Add|Equals|Remove|Xor} <entity_type> Common_to <entity_type> Name
'pattern' ['pattern'...]

The following is an example of the common_to operator.

bri x 10
curve 2 name 'joe'
curve 3 name 'alf'
group 'mygroup' add surf common_to curve name 'joe' 'alf'

Group Booleans

Groups may also be created from existing groups by using boolean operations. Each of these commands will create a
new group that contains entities from two existing groups. The intersect command will create a new group that contains
elements common to both existing groups. The unite command will contain entities that exist in either group. The
subtract command will remove entities that are common to both groups and create a new group from entities that exist in
exactly one of the groups.

Group {<'name'>|<id>} Intersect Group <id> with Group <id>

Cubit 13.2 User Documentation

412

Group {<'name'>|<id>} Unite Group <id> with Group <id>

Group {<'name'>|<id>} Subtract Group <id> from Group <id>

Mesh Groups

Groups may also contain mesh entities. The commands for adding and removing mesh entities are analogous to those for
geometric entities.

Group ["name" | <id>] Add {Hex|Face|Edge|Node <id_list>}

Group ["name" | <id>] Remove {Hex|Face|Edge|Node <id_list>}

Group ["name" | <id>] Xor {Hex|Face|Edge|Node <id_list>}

Group Copy

Groups may be copied as groups using the group transform commands. Child entities cannot be moved using this
command. If a child entity is in the group, its parent entity must be specified as well. In addition, all merge partners must
be specified. Only groups containing geometric entities can be copied with these commands. If a geometry entity is
meshed, the mesh will be copied as well, unless the [nomesh] option is given. Copied entities can be moved, rotated,
reflected, or scaled as well.

Group {<'name'>|<id>} Copy [Move <x> <y> <z>] [nomesh]

Group {<'name'>|<id>} Copy [Move {x|y|z} <distance>...] [nomesh]

Group {<'name'>|<id>} Copy [Move <direction> [distance]] [nomesh]

Group {<'name'>|<id>} Copy [Reflect {x|y|z}] [nomesh]

Group {<'name'>|<id>} Copy [Reflect <x> <y> <z>] [nomesh]

Group {<'name'>|<id>} Copy [Rotate <angle> About {x|y|z}] [nomesh]

Group {<'name'>|<id>} Copy [Rotate <angle> About <x> <y> <z>] [nomesh]

Group {<'name'>|<id>} Copy [Scale <scale> | x <val> y <val> z <val>] [nomesh]

Group Transformations

Groups may be transformed as groups using the group transform commands. This is especially helpful for transforming
groups of free mesh elements, where no geometry exists. The command syntax is shown below.

Group {<'name'>|<id>} [Copy [nomesh]] Move <dx> <dy> <dz>

Group {<'name'>|<id>} [Copy [nomesh]] Move {x|y|z} <distance>...

Group {<'name'>|<id>} [Copy [nomesh]] Reflect {x|y|z}

Group {<'name'>|<id>} [Copy [nomesh]] Reflect <x> <y> <z>

Group {<'name'>|<id>} [Copy [nomesh]] Reflect {x|y|z}

Group {<'name'>|<id>} [Copy [nomesh]] Reflect <x> <y> <z>

Group {<'name'>|<id>} [Copy [nomesh]] Rotate <angle> About {x|y|z}

Group {<'name'>|<id>} [Copy [nomesh]] Rotate <angle> About <x> <y> <z>

Group {<'name'>|<id>} [Copy [nomesh]] Rotate <angle> About Vertex <Vertex-1> [Vertex] <Vertex-2>

Group {<'name'>|<id>} [Copy [nomesh]] Scale <scale> | x <val> y <val> z <val>

Basic Group Operations

413

The nomesh option applies to the copy part of the command. If the no_mesh option is specify, the mesh will not be
copied.

Deleting Groups

Groups can be deleted with the following command:

Delete Group <id range> [Propagate]

The option propagate will delete the group specified and all of its contained groups recursively.

Cleaning Out Groups

You can remove all of the entities in a group via the cleanout command:

Group <group_id_range> Cleanout [Geometry|Mesh] [Propagate]

By default all entities will be removed - optionally you can cleanout just geometry or mesh entities. As in delete, the
propagate option will cleanout the group specified and all of its contained groups recursively.

415

Groups in Graphics

In the GUI version of CUBIT, groups may be picked with the mouse.

When displaying a group containing hexes, only the outside skin of the hexes will be displayed.

417

Propagated Hex Groups

 Starting on a Surface

 Starting on a Face

Propagated hex groups are a way of grouping hexes from a hex mesh using sweep-type criteria. For example, creating a
group containing all hexes between two specified mesh faces.

Note: the first examples below are based on first executing these commands:

brick width 10
volume 1 size 1
mesh volume 1

Propagated Hex Group Starting on a Surface

Starting on a surface can end at a surface or can end after the number of times the user specifies.

 Ending at a Surface

 Number of Times

 Ending at a Surface with Multiple

 Number of Times with Multiple

 Ending at a Surface with Direction

 Number of Times with Direction

Ending at a Surface

Group ['name' | <id>] Add Hex Propagate Surface <id> Target Surface <id>

Example

group 2 add hex propagate surface 1 target surface

Result: Group 2 will be created containing 1000 hexes

Number of Times

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number>

Example

group 2 add hex propagate surface 1 times 4

Result: Group 2 will be created containing 400 hexes

Both methods, ending at surface or number of times, can be used with the "multiple" option which will create several
groups depending upon the multiple number specified.

Ending at a Surface with Multiple

Group ['name' | <id>] Add Hex Propagate Surface <id> Target Surface <id> Multiple <number>

Example

group 2 add hex propagate surface 1 target surface 2 multiple 2

Result: Five groups will be created and stored with their respective ids of multiple 2, these groups will be stored in the
parent group, Group 3, and Group 3 will be stored in the grand parent group, Group 2.

Cubit 13.2 User Documentation

418

Number of Times with Multiple

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number> Multiple <number>

Example

group 2 add hex propagate surface 1 times 10 multiple 5

Result: Two groups will be created and stored with their respective ids of multiple 5, these two groups will be stored in the
parent group, Group 3, and Group 3 will be stored in the grand parent group, Group 2.

If number of times is specified and the direction is ambiguous, the surface direction or the node direction can be specified
to direct the propagation. If the end surface is specified, only a node direction can be specified to direct the propagation.
When specifying the node direction, the node has to be picked such that when the hexes are propagated, the picked node
lies in these propagated hexes. If that node is never reached while propagating, the direction is not found and zero hexes
will be included in the specified group.

Note: for the examples below, the result can be seen by executing these commands:

brick x 10
vol 1 size 1
brick width 10
body 2 move 10
volume all size 1
merge all
mesh volume all

Ending at Surface with Direction

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number> Direction Node <id>

Example

group 2 add hex propagate surface 6 target surface 12 direction node 1530

Result: Group 2 will be created containing 400 hexes

Note: The direction command and the multiple command can be combined (i.e. group 2 add propagate surface 6 times 4
multiple 2 direction node 1530)

Number of Times with Direction

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number> Direction [surface <id> |
node <id>]

Example

group 2 add hex propagate surface 6 times 4 direction surface 4

group 2 add hex propagate surface 6 times 4 direction node 1530

Result: group 2 will be created containing 400 hexes

Propagated Hex Group Starting on a Face

When starting on a face, the propagation method can end at a surface, end at a face or can end after the number of times
the user specifies:

 Ending at a Surface

 Ending at a Face

 Number of Times

 Ending at a Surface with Multiple

Propagated Hex Groups

419

 Ending at a Face with Multiple

 Number of Times with Multiple

 Ending at a Face with Direction

 Ending at a Surface with Direction

 Number of Times with Direction

Ending at a Surface

Group ['name' | <id>] Add Hex Propagate [Source] Face <id range> Target Surface <id>

Example

group 2 add hex propagate face 1 11 21 target surface 2

Result: Group 2 will be created containing 30 propagated hexes (10 layers of 3 hexes)

Ending at a Face

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Target Face <id>

Example

group 2 add hex propagate face 1 target face 1721

Result: Group 2 will be created containing 5 propagated hexes (5 layers of 1 hex)

Note: Ending at a face requires starting at one face at one time, but ending at surface allows multiple start faces

Number of Times

Group ['name' | <id>] Add Hex Propagate [Source] Face <id range> Times <number>

Example

group 2 add hex propagate face 2 times 4

Result: Group 2 will be created containing 4 propagated hexes (4 layers of 1 hex)

All of these methods, ending at surface, end at a face or number of times, can be used with the "multiple" option which will
create a grandparent (top-level), parent (mid-level, contained within the grandparent) and child (bottom level, contained
within the parent) groups. The child groups will contain each hex layer (specified number of layers per child group), all
organized into a single parent group, which is organized underneath the group ID given to the command. Subsequent
propagation commands could then be executed adding to the grandparent group, but creating a new parent and child
groups. This way multiple propagation "sets" can be stored in one grandparent group, if desired.

Ending at a Surface with Multiple

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Target Surface <id> Multiple <number>

Example

group 2 add hex propagate face 1 target surface 2 multiple 1

Result: Ten groups will be created and stored with their respective ids, one for each layer of hexes. These groups will be
stored in the parent group, Group 3, and Group 3 will be stored in the grand parent group, Group 2. A subsequent
propagation command could be executed adding to group 2 (the grandparent), which would create a single group
contained in group 2 (the parent), containing the hex layer groups (the children).

Ending at a Face with Multiple

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Target Surface <id> Multiple <number>

Cubit 13.2 User Documentation

420

Example

group 2 add hex propagate face 1 target face 1721 multiple 1

Result: 5 groups will be created and stored with their respective ids, one for each layer of hexes. These groups will be
stored in the parent group, Group 3, and Group 3 will be stored in the grand parent group, Group 2. A subsequent
propagation command could be executed adding to group 2 (the grandparent), which would create a single group
contained in group 2 (the parent), containing the hex layer groups (the children).

Number of Times with Multiple

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Times <number> Multiple <number>

Example

group 2 add hex propagate face 1 times 10 multiple

Result: Two groups will be created and stored with their respective ids, these two groups will be stored in the parent
group, Group 3, and Group 3 will be stored in the grand parent group, Group 2.

If the end surface or end face is ambiguous, a node direction can be specified to direct the propagation. When specify the
node direction, the node has to be picked such that when the hexes are propagated, the picked node lies in these
propagated hexes. If that node is never reached while propagating, the direction is not found and zero hexes will be
included in the specified group.

Ending at Face with Direction

Group ['name' | <id>] Add Hex Propagate [source] Face <id> Target Face <id> Direction Node <id>

Example

group 2 add hex propagate face 1721 target face 1 direction node334

Result: group 2 will be created containing 6 hexes

Ending at Surface with Direction

Group ['name' | <id>] Add Hex Propagate [Source] Face <id range> Target Surface <id> Direction
Node <id>

Example

group 2 add hex propagate face 1 target surface 2 direction node 334

Result: group 2 will be created containing 10 hexes

Note: The direction command and the multiple command can be used together (i.e. group 2 add propagate face 1721 end
face 1 multiple 2 direction node 334)

If number of times is specified and the direction is ambiguous, a surface direction or a node direction can be specified to
direct the propagation. The node direction has the same condition as when ending at a surface or face and that is it must
lie in the propagated hexes.

Number of Times with Direction

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Times <number>Direction [surface <id>
| node <id>]

Example

group 2 add hex propagate face 110 times 4 direction surface 2

Propagated Hex Groups

421

group 2 add hex propagate face 1 times 4 direction node 269

Result: group 2 will be created contained 4 hexes

Note: The direction command and the multiple command can be used together. (i.e. group 2 add propagate face 1721
times 4 multiple 2 direction surface 1)

Naming Convention for Propagated Hex Groups

A special naming convention can be used for the propagated hex groups, best described by an example.

The following command will create a hierarchy of logically named groups, as follows.

group 'W1P1T1' add propagate surf 1 end surf 2 multiple 1

The hierarchy looks like this:

W1

W1P1

W1P1T1

W1P1T2

W1P1T3

...

W1P1T10

Where W1P1 is contained within W1, and W1P1T1, W1P1T2, etc.. are contained within W1P1.

The software simply looks for numerical numbers in the group name and parses out the correct grandparent, parent and
child names from the substrings. There must be exactly 3 substrings in the group name, each ending with an integer for
the command to work properly.

A subsequent command:

group 'W1P2T1' add propagate surf 3 end surf 5 multiple 1

will add a parent group to W1, called W1P2, and the subsequent child groups:

W1

W1P1

W1P1T1

W1P1T2

W1P1T3

...

W1P1T10

W1P2

W1P2T1

W1P2T2

W1P2T3

...

Cubit 13.2 User Documentation

422

W1P2T10

423

Seeded Mesh Groups

It is also possible to automatically group surface mesh elements based on feature angles. Given a seed element, the
algorithm will loop over all adjacent elements and create groups of elements whose surface normals are similar, or which
fall within a certain radius. The command syntax is:

Group {<'name'>|<id>} {Add|Equals|Remove|Xor} Seed <mesh_entities> {Feature_angle <angle>
[Divergence]|Depth <number>}

The seed element may be a quad, tri, or node element. There are two methods of angle comparison for this command.
The feature angle option will compare angles of the each element to its adjacent elements by comparing surface normals.
In the case of nodes, the seed node surface normal will be the average of the adjacent faces or tris. Nodes will be added
if their attached faces meet the angle requirements. The divergence option will compare angles to the original seed
element's surface normal. The depth option will add elements within a certain radius.

The following figures illustrate the use of the seed method to create mesh groups using the feature angle and divergence
methods.

CUBIT> group 'mygroup1' add seed face 269 feature_angle 45

Cubit 13.2 User Documentation

424

CUBIT> group 'mygroup2' add seed face 269 feature_angle 45 divergence

The seed method of creating groups is particularly useful for creating groups on free meshes for the purpose of assigning
nodesets and sidesets.

425

Quality Groups

Groups can also be formed from the hexes or faces obtained from the quality command. Each group formed using quality
can be drawn with its associated quality characteristics {i.e. jacobian low .2 high .3} automatically.

Group {<'name'>|id} {Add|Equals|Remove|Xor} Quality { Hex | Tet | Face | Tri | Volume | Surface |
Group } <id_range> { quality metric name (default is SHAPE) } [High <value>] [Low <value>] [Top
<number>] [Bottom <number>]

The following example illustrates the use of quality groups:

group 2 add quality volume 1 jacobian

In this case, if the meshed brick from the section Propagated Hex Groups is used, Group 2 will be created and it will
contain 1000 hexes with quality characteristics.

The quality metric names can be found in the Quality Assessment section of the documentation.

427

Entity Names

By default, geometric entities in CUBIT are referenced using an entity type (e.g. Surface, Volume) and an id, for example
"draw surface 1". However, geometric entities can also be assigned names, to simplify working with specific
entities. Once a name is assigned to an entity, that name can be used in any CUBIT command in place of the entity type
and number. For example, if surface 1 were named 'mysurf1', the command above would be equivalent to "draw
mysurf1". Also, since entity names are saved with the geometry, this also provides a means for persistent identifiers for
geometric entities. Names can be added or removed using the following commands.

{Group|Body|Volume|Surface|Curve|Vertex} {Name | Rename} {`<entity_name>'| Default}

{Group|Body|Volume|Surface|Curve|Vertex} Remove Name {`<entity_name>'| All | Default}

The name of each topological entity appears in the output of the List command. In addition, topological entities can be
labeled with their names (see label command). A list of all names currently assigned and their corresponding entity type
and id (optionally filtered by entity type) can be obtained with the command

List Names [{Group|Body|Volume|Surface|Curve|Vertex|All}]

Notes:

 In a merge operation, the surviving entity is given the name(s) of the deleted entity.

 A geometric entity may have multiple names, but a particular name may only refer to a single entity.

Valid and Invalid Names

Although any string may be used as an entity name, only valid names may be used directly in commands. A name is valid
if it begins with a letter or underscore ("_"), followed by any combination of zero or more letters, digits, or the characters
".", "_", or "@". If an attempt is made to assign an invalid name to an entity, CUBIT will generate a valid version of the
invalid name by replacing invalid characters with an underscore. Then both the valid and invalid versions of the name are
assigned to the entity. For example, assigning the name "123#" to a volume will result in the volume having two names,
"123#" and "_23_". The valid name can be used directly in commands (mesh _23_), while the invalid name can only be
referenced using a longer, less direct syntax (mesh volume with name "123#").

Reconciling Duplicate Names

When an attempt is made to assign the same name to two different entities, a suffix is added to the name of the second
entity to make it unique. The suffix consists of the "@" character followed by one or more letters or numbers. For example,
the following commands will result in volumes 1 to 3 having the names "hinge", "hinge@A", and "hinge@B", respectively:

volume 1 name "hinge"
volume 2 name "hinge"
volume 3 name "hinge"

To prevent this automatic "fixing" of names, the Fix Duplicate Names flag may be switched to off. If the user attempts to
assign a duplicate name while the flag is set to off, the name will remain unchanged.

Set Fix Duplicate Names [ON|Off]

Automatic Name Creation

CUBIT provides an option for automatically assigning names to entities upon entity creation. This option is controlled with
the command:

Set Default Names {On|OFF}

When this option is on, entities are assigned default names consisting of a geometry type concatenated with the entity id,
for example 'cur1', 'surf26', or 'vol62'.

Cubit 13.2 User Documentation

428

Automatic Name Propagation

CUBIT automatically propagates names through webcuts. If an entity that has been assigned the name "Gear" is split
through webcuts, the resulting bodies are named "Gear" and "Gear@A". Try the following example.

br x 10
volume 1 name "Cube"
webcut volume 1 xplane
webcut volume 1 2 yplane
webcut volume 1 2 3 4 zplane
label volume name

Figure 1. Name Propagation through Webcuts

You can operate on these propagated names using wildcards such as:

mesh volume with name 'Cube*'
block 1 volume with name 'Cube*'

Naming Merged Entities

When entities that have the same base name, such as "platform" and "platform@A", are merged, the resulting entities is
assigned both names. The set merge base names on command tells Cubit that in this situation, it should merge the
names too. The command syntax is:

Set Merge Base Names [On|OFF]

For example:

brick x 10
vol 1 copy move 10
surf 6 name 'platform'
surf 10 name 'platform'

Entity Names

429

Surface 10 actually is named platform@A, since we don't want duplicate names

merge all
list surf 6

You see that surface 6 has both 'platform' and 'platform@A' as names. Now, for the contrasting example

brick x 10
vol 1 copy move 10
surf 6 name 'platform'
surf 10 name 'platform'
set merge base names on
merge all
list surf 6

You see that surface 6 has only 'platform' as its name.

431

Entity IDs

Topological entities (including groups) are assigned integer identification numbers or ids in CUBIT in ascending order,
starting with 1 (one). Each new entity created within CUBIT receives a unique id within the topological entity type. This id
can be used for specifying the entity in CUBIT commands, for example "draw volume 3".

Gaps in ID space

After working with a geometry model for some time, various operations will cause gaps to be left in the numbering of the
geometric entities. The compress ids command can be used to eliminate these gaps:

Compress [Ids] [All] [Group|Body|Volume|Surface|Curve|Vertex|Hex|Face|Edge|Node] [Retainmax]
[Sort]

Typing compress with no options or compress all will compress the ids of all entities; otherwise, the entity type for which
ids should be compressed can be specified. The retainmax argument will retain the maximum id for each entity type, so
that entities created subsequent to this command will receive ids greater than that value. If the sort qualifier is included,
the new id of each entity will be determined by its size and location. Small entities are given a lower id than large entities.
Entities that are the same size are sorted by their location, with lower x, y, and z coordinates leading to a lower id. If two
entities are found to have the same size and location, they are sorted according to their previous ids. This option can be
used to restore ids in translated models in a manner which leads to more persistence than purely random id assignment.

Renumbering IDs

The renumber command can be used to change the id numbers assigned to meshed entities.

Renumber {Node|Edge|Tri|Face|Hex|Tet|Wedge} <id_range> Start_id <id> [Uniqueids]

Any valid range specification can be used to specify the source ids. There is no requirement that the ids being
renumbered are consecutively numbered. The new id numbers will be consecutive beginning at the specified start id. For
the command to be successful there can be no existing ids within the effective range of the start id. If the resultant
destination range is not free of id numbers, the command will fail with an appropriate error.

Using the uniqueids keyword will result in the elements to be renumbered such that no element shares the same ID.

Volume ID

The volume id command is used to renumber a single volume.

Volume <old_id> Id <new_id>

This command replaces the volume's old_id with the new_id if no other is using the new_id number. Entity renaming only
works for volumes; it does not work for nodes, curves or surfaces.

433

Attribute Behavior

In this context, attributes are defined as data associated directly with a particular geometry entity. In CUBIT's
implementation of attributes, these data can occupy one of three "states" at any given time: they can be stored in data
fields on CUBIT's geometry entities; they can be stored in an intermediate representation, using CUBIT's attribute objects;
or they can exist only on the ACIS objects. When they are stored on ACIS objects, those attributes are written to and read
from disk files with the geometry. This mechanism allows CUBIT-specific information to be stored and retrieved with the
geometry data. By default, attribute data is not stored with geometry. To enable the use of attributes, use the commands
described in the following sections.

435

Attribute Types

The attribute types currently implemented in CUBIT are shown below.

Attribute Types Description

Color Entity Color

Composite vg Used to restore composite virtual topology

Genesis entity Membership in boundary conditions (block, sideset, nodeset)

Id Entity Id

Mesh container Handle to mesh defined for the owner

Mesh scheme Meshing scheme (e.g. paving, sweeping, etc.)

Name Entity name

Partition vg Used to restore partition virtual topology

Smooth scheme Smoothing scheme (e.g. Laplacian, Condition Number)

Unique Id Unique entity id, used to cross-reference other entities

Vertex type Used to define mesh topology at vertex for mapping/submapping

Virtual vg Used to store virtual geometry entity(ies) defined on an entity

437

Attribute Commands

Most non-CUBIT-developer uses of attributes will be to use all or none of the attributes. Therefore, the most common
command to enable and disable the use of attributes is:

Set Attribute {On|Off}

When this option is on, all defined attributes will be saved with the geometry when the user enters the Export Acis
command.

When a geometry is imported into CUBIT, any attributes defined on that geometry and recognized as CUBIT attributes are
imported and put into an intermediate representation (that is, this information is not assigned directly to the geometry
entities). To find out which attributes are defined on a given set of entities, use the following command:

List [<entity_list>] Attributes [Type <attribute type>] [All] [Print]

If no entities are entered, attribute information for all the geometric entities defined in CUBIT is printed.

The Type option can be used to list information about a specific attribute type; values for are the same as those in the
previous table.

If the All option is entered, information about all attribute types will be printed, even if there are none of those attributes
defined for the specified entities.

If the Print option is entered, the information stored in each attribute will be printed; this command is usually used only by
CUBIT developers.

Control By Attribute Type or Geometric Entity

Attributes can be enabled or disabled by attribute type, to allow the use of only user-specified attribute types. To turn on
or off specific attributes, use the command:

Set Attribute <attribute type> {On|Off}

where <attribute type> is one of the types shown in the previous table.

Attributes can also be controlled to automatically write (update) and read (actuate) to/from solid model files automatically,
using the command:

Set Attribute <attribute_type> Auto {Actuate|Update} {On|Off}

Finally, attributes can be manually written to and read from the geometric entities, and removed from cubit entities, using
the command

{geom_list} Attribute {All|Attribute_type} {Actuate|Remove|Update|Read|Write}

where geom_list is a list of geometry entities. This command is recommended only for developers' use.

439

Using CUBIT Attributes

A typical scenario for using CUBIT attributes would be as follows.

Construct geometry, merge, assign intervals, groups, etc. (i.e. normal CUBIT session)

Enable automatic use of attributes using the command:

Set Attribute On

Export acis file (see Export Acis command).

Subsequent runs:

Enable automatic reading and actuating of attributes:

set attribute on

Import ACIS file (see Import Acis command)

Used in this manner, geometry attributes allow the user to store some data directly with the geometry, and have that data
be assigned to the corresponding CUBIT objects without entering any additional commands.

441

Entity Measurement

To output various properties of entities, the following Measure command options are available.

 Measure Between

 Measure Small

 Measure Angle

 Measure Void

Measure Between

Measure Between { { Vertex|Curve|Surface |Volume|Node} <id1> | Location <options> | Plane
<options> | Axis <options> } With { {Vertex|Curve|Surface|Volume|Node} <id2> | Location
<options> | Plane <options> | Axis <options> }

Measure Between {Surface|Curve} <id1 > [Surface|Curve] <id2> [Node]

Measure Between {Vertex|Curve|Surface|Volume|Node|Edge|Face|Tri|Hex|Tet} <id1> With
{Vertex|Curve|Surface|Volume|Node|Edge|Face|Tri|Hex|Tet} <id2>

The Measure Between command outputs the distance from one entity, location, plane, or axis to the next. The two
entities in the command should be separated by the word "with". The result will always be the minimum distance between
entities. For example, measuring between two spheres will output the minimum distance between them, not the distance
between centroids. The example shown below will output the minimum distance between vertex 1 and surface 2.

measure between vertex 1 surface 2

The second form of the command is just for surfaces or curves and contains the Node argument. This argument attempts
to measure between corresponding nodes on a pair of surfaces or curves. The command tries to determine a one-to-one
mapping of nodes between the pair. It returns the greatest distance between any two nodal pairs, least distance between
any two nodal pairs, and average distance between all of the nodal pairs. The mapping algorithm works best on surfaces
if they are parallel.

The last form of the command measures between any geometry or mesh entities. The measurement to the mesh entities
is to their center (i.e. the averaged vector location of all of the nodes belonging to the mesh entity).

Measure Small

Measure Small {Length|Area|Volume|All} {Body|Surface} <id_list>

The Measure Small command locates all of the lengths, areas, or volumes smaller than the Measure Small Tolerance
setting. Entities meeting the small tolerance criteria are listed in the output window and typically highlighted in the view
port. The following two commands set the small tolerance to 0.1 and output all of the curves within body 1 with lengths at
or below the small tolerance.

set measure small tolerance 0.1

measure small length body 1

Measure Angle

Measure Angle { Direction <options> | Plane <options> | Axis <options> } With { Direction
<options> | Plane <options> | Axis <options> }

The Measure Angle command displays the interior angle between the two entered entities. When a plane and a direction
are specified, the angle between the direction vector and its projection into the plane is displayed. The measured angle
represents the distance between the orientations of entities, and does not require the entities to intersect. Angles of model
features can be measured by using the various options associated with the Direction, Planes, and Axis commands.

measure angle direction tangent curve 1 with plane surf 1

Cubit 13.2 User Documentation

442

Measure Void

Measure Void [Face | Tri] <range>[No_Checks]

The Measure Void command takes a closed list of quadrilaterals or triangles and calculates the volume of the internal
region defined by the given list of elements. This command assumes that the normals on the given elements are
consistently ordered. If the normals are pointing away from the interior of the void, the reported volume may be negative.
This command will check to ensure that the given elements do form a closed, manifold shell, otherwise an error is
reported. Common uses will be to calculate the volume of an internal void for use in determining bulk element properties
for a thermal analysis.

Rather than issuing an error, the no_check option does not check for closure of the faces and will compute a void volume
regardless of their watertightness. This is useful if faces are all touching, but may not have complete topological closure.

443

Working With Parts and Assemblies

Volumes can be organized into a hierarchical tree of parts, assemblies, and sub-assemblies. Assemblies may contain
parts and other assemblies. Parts, on the other hand, may not contain sub-entities.

Each part and assembly has a name and an optional description. Other attributes may also be assigned, such as a
material specification or a link to an entry in a PDM system. See Metadata Attributes.

The relationship between the geometric model and the assembly is determined by associating parts with volumes. A
single part can be associated with any number of volumes, including zero volumes. A volume, however, can be
associated with only one part.

As volumes are modified, CUBIT automatically maintains the appropriate relationships with parts. If a volume is
associated with a part, and that one volume is split into multiple volumes through a webcut or some other operation, each
of the resulting volumes is automatically associated with the original volume’s part. Copying a volume will also result in the
new volume being associated with the same part as the original volume.

 Identifying Parts and Assemblies

 Creating Parts and Assemblies

 Deleting Parts and Assemblies

 Associating Parts with Volumes

 Viewing All Assembly Information at Once

Identifying Parts and Assemblies

A part or assembly is identified by its assembly path. An assembly path is much like a directory path in a file system. It
consists of the name of each ancestor in the assembly tree, separated by a forward slash. For example, a part named
“p1” contained within the top-level assembly “a1” would be identified by the path “/a1/p1”. If the part “p2” is part of the
assembly “a2”, and “a2” is a sub-assembly of “a1”, then “p2” has the path “/a1/a2/p2”.

More than one part or assembly may have the same name. To differentiate between parts or assemblies with the same
name and path, each part also has an instance number. If two entities have the same name, they will not have the same
instance number. For example, two parts named “p1” may be “p1 instance 1” and “p1 instance 2”.

Instance numbers may be incorporated into assembly paths by placing the instance number in angled braces after a part
or assembly name. For example, “p1 instance 3” is identified in a path as “p1<3>”. Other examples of instance numbers in
assembly paths include “/a1<1>/a2<1>/p1<3>” and “/a1/a2<1>/p1”. Assembly paths are always allowed to incorporate
instance numbers, but are only required to include as many instance numbers as it takes to avoid ambiguity. Note that
some commands do accept ambiguous paths, selecting a random entity which matches the path.

Most commands which accept assembly paths also allow the path to be followed by an “instance” command option (for
example, metadata list part “/a1/p1” instance 3). The instance option always refers to the instance number of the last item
in the path (p1 in the example).

Creating Parts and Assemblies

Parts and assemblies can be created using the following commands:

Metadata Create {Assembly|Part} “<absolute_path>” [Instance <instance>]

If the instance option is not included, CUBIT will assign an appropriate instance number to the new entity. If the instance
option IS included, an entity with the specified name and instance number must not already exist or the command will fail.

Note that the path must be absolute, identifying each ancestor of the new entity. Any ancestors of the new entity which do
not already exist are automatically created.

Deleting Parts and Assemblies

To delete a part or an assembly, use the Metadata Remove command:

Cubit 13.2 User Documentation

444

Metadata Remove {Part|Assembly} “<path>”

This will remove the specified part or assembly. Assemblies can only be removed if they have no contents. All contained
parts and subassemblies must be removed before removing the parent assembly.

It is also possible to remove all parts and assemblies that have no association with geometric volumes in the model:

Metadata Clean

This can be extremely useful when importing geometry which has been simplified with metadata which has not been
simplified. For example, eMatrix currently writes out the full assembly hierarchy even when exporting a simplified
representation of the geometry.

Associating Parts with Volumes

The relationship between the geometric model and the assembly is determined by associations between parts and
volumes. As stated previously, a part may be associated with any number of volumes, while a volume may be associated
with only one part. The easiest way to associate a volume with a part is to use the entity tree in the user interface. Drag a
volume in the tree onto a part in the tree, and the volume and part are now associated. Since a volume can only be
associated with one part at a time, any previous association between that volume and a part is removed.

Part-to-volume associations can be created on the command line using the Metadata Modify Path command:

Metadata Modify Path “<part_path>” Volume <ids>

The specified volume or volumes will be associated with the part specified by part_path. Any volumes already associated
with the specified part will retain their association with the part.

Associations can be removed using the Metadata Remove command:

Metadata Remove Volume <ids>

After the Metadata Remove command has been issued, the specified volumes are no longer associated with any part.

The set of volumes associated with a given part can be modified using the Metadata Replace command:

Metadata Replace Part “<part_path>” Volume <ids>

When the Metadata Replace command is issued, all associations the part may have had with any volumes are removed.
New associations are then created with the specified volume or volumes.

Viewing All Assembly Information at Once

Once an assembly tree is created, all assemblies, parts, and part-to-volume associations can be viewed using the
command:

Metadata List Tree

This will print the names of all parts and assemblies in the output window, along with the IDs of the volumes associated
with each part.

It is also possible to view all parts, their properties, and their volume associations using a spreadsheet application such as
Microsoft Excel. This is done by generating a file using the command:

Export Part_List "<filename>" [OverWrite]

This command writes an XML file in a format that Excel can convert to a spreadsheet. To do this, simply import the XML
file into Excel as an XML List. The data can then be sorted and filtered by any of the parts' properties.

The Export Part_List command is particularly useful for identifying parts which are not correctly associated with parts.
Among the fields that can be filtered is the is-part field. This field is FALSE for each volume that is not associated with a
part. Filtering on this value will show a list of all volumes that are not associated with any part. The volume-ids field will
show the ID of each unassociated volume, and the volume-name field will show each unassociated volume's name, if
any.

Working With Parts and Assemblies

445

It is equally easy to identify parts that are not associated with volumes. Display only those rows with a blank value in the
volume-ids field to see a list of parts that have no associated volume.

Similar methods can be used to identify missing materials information. Fields can also be sorted to group the parts by
material.

447

Metadata Attributes

Each part and assembly has several attributes, including its name and description. In addition, there are several attributes
which do not describe any particular part or assembly. The “global” attributes describe the assembly tree as a whole, or
the metadata as a whole.

These sections describe how to view and edit metadata attributes.

 Part and Assembly Metadata Attributes

 Viewing Part and Assembly Metadata Attributes

 Modifying Part and Assembly Metadata Attributes

 Viewing and Modifying Global Metadata Attributes

Part and Assembly Metadata Attributes

Each part and assembly has several attributes. Some attributes apply to both parts and assemblies, while other attributes
apply to only parts. The attributes are listed in the following table:

Attribute Name Attribute Description Applies To:

Part Assembly

Name Name of Part or Assembly x x

Description Description of Part or Assembly
x

x

Instance Instance Number x x

File The name of the file containing the
original version of this entity. Often a
reference to a PDM system.

x x

Units The unit system of this part or assembly. x x

Material_Description The name or description of the material
of which this part is composed.

x

Material_Specification The formal specification number of the
material of which this part is composed.

x

Density The density of the material of which this
part is composed. Setting it to a non-
positive value will clear the attribute, as if
there were no value assigned.

x

Material_Volume The volume of the region enclosed by
this part. The material_volume is not
calculated from the volumes associated
with the part. It will often differ from the
actual volume enclosed by this part's
associated geometric volumes, and can
also be manually set to any non-negative
value. Setting it to a non-positive value
will clear the attribute, as if there were no
value assigned.

x

Elemental_Composition A string value describing the composition
of the material, typically expressed as

x

Cubit 13.2 User Documentation

448

percentages of given elements.

Viewing Part and Assembly Metadata Attribute Values

The easiest way to view a part or assembly’s metadata attribute values is to select the item in the entity tree. The item’s
metadata attributes are listed in the property page.

A part or assembly’s metadata attribute values can also be viewed using the Metadata List command:

Metadata List [<attribute_name>] {Part|Assembly} “<path>”

The attribute_name should be one of the attribute names in the table above. If no attribute name is included in the
command, all metadata attributes are listed.

Metadata attributes can also be listed based on a volume.

Metadata List [<attribute_name>] Volume <id>

This volume-based command works just like the part-based command, but lists the metadata for the part with which the
volume is associated.

Modifying Metadata Attributes

A part or assembly’s metadata attributes can be modified in the property page. Simply select the part or assembly in the
entity tree, then click in the appropriate text field in the property page.

A part or assembly’s metadata attributes can also be modified using the Metadata Modify command:

Metadata Modify <attribute> “new value” {Part|Assembly} “<path>”

where attribute is one of the attributes listed in the table above. The specified attribute value will be changed to
new_value.

There is also a volume-based version of the Metadata Modify command:

Metadata Modify <attribute> “new_value” Volume <id>

The volume-based command works just like the part-based command, operating on the part with which the volume is
associated. Note that if the specified volume is not associated with a part, a new part will be created and associated with
the volume.

Viewing and Modifying Global Metadata

There are several attributes which do not describe any particular part or assembly. These “global” attributes describe the
metadata as a whole:

Attribute Name Description

Classification_Level The level of sensitivity of the metadata. Usually one of the following:

 Secret

 Confidential

 Unclassified

Classification_Category The classification category. Usually one of the following:

 Not Restricted

 Restricted Data (RD)

 Formerly Restricted Data (FRD)

Metadata Attributes

449

 National Security Information (NSI)

Weapon_Category Sigma 1 through Sigma 15

Global metadata values can be viewed using the Metadata List command:

Metadata List <attribute_name>

Global metadata values can be modified using the Metadata Modify command:

Metadata Modify <attribute_name> “new_value”

For both commands, attribute_name should be one of the attribute names in the table above.

451

Importing and Exporting Metadata

Metadata can be imported from and exported to a file. In most cases metadata will be imported and exported with a data
file such as a SAT file or a genesis file. CUBIT is also compatible with DART artifacts, including artifact dependency
tracking.

 Importing Metadata

 Exporting Metadata

 Importing and Exporting DART Artifacts

Importing Metadata

Parts and assemblies can be created and associated with geometry by importing a DART Metadata file along with a
geometry file, using the XML option of the import command. At this time the only two geometry formats which support
metadata import are STEP and ACIS:

Import {Step|Acis} "<filename>". . . [XML "<xml_filename>"]

To successfully associate the contents of the geometry file with the parts described in the metadata, the XML file must
follow the DART Metadata 3.0 XML schema found at http://www-irn.sandia.gov/schema/dart/3.0/DARTMetadata.xsd, and
the geometry file must contain extra DART data. A suitable STEP file and a corresponding metadata file can be exported
from Pro/E using an add-in called eMatrix (a tool under the umbrella of the DART project, see the Analyst Home Page for
details). A SAT file and corresponding metadata file can be obtained by exporting them from CUBIT using the XML option
of the export command.

Exporting Metadata

Some export commands include an XML option. Including this option in the export command instructs CUBIT to write out
a DART metadata file, in addition to the traditional data file. The metadata file includes the data required to enable
interoperability with other DART-compliant applications.

The only geometry export command which supports the XML option is ACIS export:

Export Acis “<acis_filename>” [XML “<xml_filename>”]

When an ACIS file exported with metadata, the specified XML file includes a description of the assembly hierarchy as it
appears in CUBIT.

Metadata can also be written to an XML file when exporting mesh. The only mesh export command which supports the
XML option is genesis export:

Export {Genesis|Mesh} “<mesh_filename>” [XML '<xml_filename>']

The XML file generated during mesh export includes the same information in a geometry metadata file, but also includes
mesh-related data such as mappings between parts and element blocks, and includes any block, nodeset, or sideset
names or descriptions which have been defined.

Importing and Exporting DART Artifacts

The DART project has defined a specific way to package data files with corresponding metadata files. A correctly
packaged set of data files with a corresponding metadata file is called an artifact. An artifact’s metadata file is always
located in the same directory as the primary data file, and is always named artifact.dta.

Within the DART environment, dependencies between artifacts may be tracked by placing tracking information into
metadata files. CUBIT supports automated artifact dependency tracking. Tracking information in an input metadata file is
automatically reflected in any output metadata file written by CUBIT.

If input is correctly packaged as an artifact, CUBIT can automatically locate and read the metadata file corresponding to a
particular input data file. To have CUBIT do this, select the “Import as Artifact” checkbox in the Open File dialog.

CUBIT can also package output as an artifact. To do so, select the “Export as Artifact” checkbox in the export dialog box.

http://www-irn.sandia.gov/schema/dart/3.0/DARTMetadata.xsd
http://www-irn.sandia.gov/analyst

Cubit 13.2 User Documentation

452

When importing or exporting artifacts using the command line, include the XML option in the import or export command,
specifying the xml file called artifact.dta in the same directory as the main data file.

For dependency tracking purposes, it may be necessary to import an artifact’s metadata file by itself. For example, it may
be necessary to import an artifact consisting of an IGES file. Since the Import IGES command does not support the XML
option, the metadata file must be imported separately. To do so, use the command:

Import XML “<xml_filename>”

When working with correctly packaged artifacts, the XML filename will always be artifact.dta.

453

Exporting ACIS Files

Geometry can be exported from within CUBIT to the ACIS "sat" (ASCII) and "sab" (binary) formats. These formats can be
used to exchange geometry between ACIS-compliant applications. The command used to export geometry is:

Export Acis [Debug] 'filename' [<geometry_entity_list>] [Binary|Ascii] [Current] [Overwrite]

The filename should be enclosed in single or double quotes. By convention, binary and ASCII ACIS files use the .sab and
.sat filename extensions, respectively. If a geometry entity list is not specified, the entire ACIS model is exported. A
geometry entity list is specified in the same format used for other CUBIT commands (See Entity Specification). Note that
the model is saved as manifold geometry, and will have that representation when imported back into CUBIT (See Non-
Manifold Topology and Geometry Merging.)

When exporting, the filename extension will determine the default file type, either ASCII or binary. A .sat extension will
default to ASCII; a .sab extension will default to binary. If you use a different file extension you can specify the type with
the [binary|ascii] option (with an unsupported extension exporting will default to ASCII but importing requires the type to
be specified). Binary files can be significantly faster but are not guaranteed to be upward compatible nor cross-platform
compatible (although testing has determined compatibility between NT and HP/UX).

In the GUI version, the current option will set the default filename for autosave (cntrl-S or File->Save (auto inc)) to the
imported filename. Also, the filename is then set in the window titlebar.

When exporting with the "file overwrite" option on, the software will check to see if the file exists already, and if it does,
exporting will fail in the command line version or ask to confirm the overwrite in the GUI version of CUBIT. The overwrite
option will override this option and overwrite the file. The "file overwrite" option defaults to ON in the GUI version, OFF in
the command line version.

When exporting, you can set the version of the Acis geometry. This allows backwards compatibility to previous versions of
Cubit or other Acis-based applications. The command to change the Acis geometry engine version is:

Set Geometry Version [version_number]

where version_number can be one of the following:106, 107, 201, 300, 301, 401, 402, 403, 500, 501, 502, 503, 600,
601, 602, 603, 700, 701, 702, 703, 704, 705, 800, 1007, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2100.
Note that you cannot set a version number that is higher than that of your current engine. For example, Cubit 6.0 was
based on Acis 6.2, so you cannot set a geometry version of 700.

See also Importing ACIS Models.

455

Exporting STEP Files

CUBIT can export geometry to the STEP format, an emerging standard for storing geometry and other information. The
STEP AP203 and STEP AP214 standards are supported. It is recommended to use AP214 for exchange of geometry
information with CUBIT. The command used to export a STEP file is:

Export Step 'filename' [<geometry_entity_list>] [Logfile ['filename'] [Display]] [Overwrite]

As with ACIS file export, you can specify which individual entities to export. If unspecified, all ACIS entities are exported.

The logfile option is used to save information regarding the conversion to STEP format. This information saved to a file
with the name specified by the user, or named 'step_export.log' by default. When running the GUI version of CUBIT, the
logfile can be displayed in a dialog window by using the display option.

The overwrite option works the same as with ACIS file export.

See Importing STEP Files for information on setting up the STEP import and export functionality.

Note that the STEP import and export functionality might not be available on all 64-bit platforms.

457

Exporting IGES Files

The ACIS IGES translator provides bi-directional functionality for data translation between ACIS and the IGES (Initial
Graphic Exchange Standard) format. The command to export IGES files is:

Export Iges 'filename' [<geometry_entity_list>] [Solid] [Logfile ['filename'] [Display]] [Overwrite]

As with ACIS file export, you can specify which individual entities to export. If unspecified, all ACIS entities are exported.

The logfile option is used to save information regarding the conversion to IGES format. This information saved to a file
with the name specified by the user, or named 'iges_export.log' by default. When running the GUI version of CUBIT, the
logfile can be displayed in a dialog window by using the display option.

The solid option allows solid volumes to be exported as Manifold Solid B-Rep Objects (MSBO). Without this option, the
iges file is simply a collection of stand-alone surfaces.

The overwrite option works the same as with ACIS file export.

See Importing IGES Files for information on setting up the IGES import and export functionality.

Note that the IGES import and export functionality might not be available on all 64-bit platforms.

459

Exporting Granite Files

As of version 13.0, the Granite geometry kernel is no longer supported.

461

Exporting Facet Files

Facet files may be exported directly, or by converting from an ACIS representation. The syntax for exporting facet files is:

Export Facets 'filename' <entity_list> [Overwrite]

The overwrite function allows you to overwrite an existing facet file.

463

Geometry Deletion

Geometry can be deleted from the model using the following command:

Delete [Body | Surface | Curve | Vertex] <id_range>

Any type of Body can be deleted, whether it is based on solid model geometry or another representation. Other entities
(Surface, Curve, Vertex) can be deleted when they are "free", i.e. when they are not contained in an entity of higher
topological order (Body, Surface or Curve, respectively); this type of geometry is often created from the lowest order
topology up.

465

Meshing the Geometry

After assigning interval or sizing attributes to a geometric entity and a meshing scheme is applied, the geometry is ready
to be meshed. To mesh a geometric entity, use the command:

Mesh <entity> <id_range> [GLOBAL|Individual]

The <entity> to be meshed may be any one of the following:

Body
Volume
Surface
Curve
Vertex

The Global and Individual options affect how the constraints are gathered for interval matching. With the Global option,
the interval constraint equations are calculated from all entities in the entity list. The Individual option calculates the
interval constraint equations from each entity individually. The Global option is the default.

Default Scheme and Interval Selection

If either interval settings or schemes have not already been set on the entities being meshed, CUBIT will do its best to
automatically set one or both of these attributes. See Auto Scheme Selection and Auto Specification of Intervals for a
description of how CUBIT chooses these attributes. In cases where the automatic scheme selection algorithm fails to
select a scheme for the geometry, the meshing operation will fail. In this case explicit specification of the meshing scheme
and/or further geometry decomposition may be necessary.

Continuing Meshing After a Mesh Failure

Frequently when meshing large assemblies containing a number of volumes, the mesh command can be applied to a
group of volumes with the same mesh command. Typically, if a mesh failure is detected, the meshing operation will
continue to mesh the remaining volumes specified at the command line. The following command permits the user to
override this feature to discontinue meshing additional volumes and return to the command line immediately after a mesh
failure is detected:

Set Continue Meshing [ON|Off]

The default for this command is ON.

Turning this setting OFF is useful when meshing assemblies where a meshing failure of one volume would adversely
affect the meshing of adjoining volume(s). This occurs frequently when meshing a sweep group using the sweep scheme.

467

Interval Firmness

Before describing the methods used to set and change intervals, it is important that the user understand the concept of
interval firmness. An interval firmness value is assigned to a geometry curve along with an interval count or size; this
firmness is one of the following values:

hard: interval count is fixed and is not adjusted by interval size command or by interval matching

soft: current interval count is a goal and may be adjusted up or down slightly by interval matching or
changed by other interval size commands.

default: default firmness setting, used for detecting whether intervals have been set explicitly by the
user or by other tools

Interval firmness is used in several ways in CUBIT. Each curve is assigned an interval firmness along with an interval
count or size. Commands and tools which change intervals also affect the interval firmness of the curves. Those same
commands and tools which change intervals can only do so if the curves being changed have a lower-precedence interval
firmness. The firmness settings are listed above in order of decreasing precedence. For example, some commands are
only able to change curves whose interval firmness is soft or default ; curves with hard firmness are not changed by these
commands.

More examples of interval setting commands and how they are affected by firmness are given in the following sections.

A curve's interval firmness can be set explicitly by the user, either for an individual curve or for all the curves contained in
a higher order entity, using the command:

{geom_list} Interval {Default | Soft | Hard}

All curves are initialized with an interval firmness of default , and any command that changes intervals (including interval
assignment) upgrades the firmness to at least soft .

Precedence

If a size is specified multiple times for a single entity, the following precedence is used:

 The highest firmness command takes precedence.
Hard commands include "curve <id> interval <val>", and "{geometry_list} interval hard" will fix the size at the
current size.

 Within a given firmness, the last-issued command takes precedence.
For example, if the user commands "surface 1 size 1" then "volume 1 size 2", and surface 1 is part of volume 1,
then surface 1 will have a size of 2.

469

Explicit Specification of Intervals

The density of edges along curves is specified by setting the actual number of intervals or by specifying a desired interval
size. The number of intervals or interval size can be explicitly set curve by curve, or implicitly set by specifying the
intervals or interval size on a surface or volume containing that edge. For example, setting the intervals for a volume sets
the intervals on all curves in that volume.

The commands to specify the number of intervals at the command line are:

{Curve|Surface|Volume|Body|Group} <range> Interval <intervals>

{Curve|Surface|Volume|Body|Group} <range> [Interval] Size <interval_size>

The first command above sets interval counts. When setting interval counts for surfaces, volumes, bodies and groups, an
intervals firmness of soft is assigned to the owned curves. When setting the interval count for a curve, a firmness of hard
is assigned.

Interval size may be specified as well; the interval count for each owned curve is computed by dividing the curve's arc
length by the specified interval size. Interval size commands always assign a firmness of soft to the specified entities.

The user can scale the current intervals or size with the following commands. Scaling is done on an entity by entity basis.

{Curve|Surface|Volume|Body|Group} <range> Interval Factor <factor>

{Curve|Surface|Volume|Body|Group} <range> [Interval] Size Factor <factor>

471

Automatic Specification of Intervals

In addition to specifying intervals explicitly based on a known count or size, CUBIT is also able to compute interval counts
automatically based on characteristics of the model geometry. The following automatic interval setting command can be
used:

{geom_list} Size Auto [Factor <factor> | Delete] [Feature] [Individual]

Vertices are not valid in the geom_list for this command. Automatic interval assignment works by examining the geometric
characteristics of the entities in the geom_list and assigning a heuristic size to the entities and their child entities. The
factor may be a floating point number between 1 and 10, where 1 represents a fine interval size and 10 represents a
coarse size. Figure 1 shows an example of different auto size specification on a CAD model.

(a) auto size factor = 7.0

(b) auto size factor = 5.0

Cubit 13.2 User Documentation

472

(c) auto size factor = 1.0

The user may assign the interval size to be the arc length of the smallest curve contained in the specified entity or entities
using the following command:

{geom_list} Size Smallest Curve

Vertices are not allowed in the geom_list for this command. This command assigns a soft interval firmness.

Default auto interval specification

If intervals have not been explicitly defined by the user for the curves or their owning surfaces and volumes, an auto size
factor of 5 will automatically be computed for the entities being meshed. The automatic size specifications can be
overridden easily by specifying another auto size factor or an explicit interval size.

If an auto size factor of 5 is undesirable for most meshing operations, the default factor may be changed by using the
following command:

Set Auto Size Default <value>

where value is a number from 1 to 10. This will be the default auto size factor used when either a factor has not been
specified on the size auto command or the entity is meshed without otherwise setting explicit intervals or size.

In previous versions of CUBIT a default interval of 1 was assigned to all entities. If this behavior is still desired, the
following command may be used to enforce this condition:

Set Default Autosize [ON|off]

Maximum Spanning Angle on Arcs

On many CAD models, arcs or small holes require that a finer mesh be specified around these entities in order to maintain
reasonable mesh quality. To facilitate this, the user may specify the maximum angle an element edge may span on an
arc. To change or list the maximum arc span, use the following commands

Set Maximum Arc_Span <angle>

List Maximum Arc_Span

The angle parameter must be a positive value less than 360. The maximum arc span setting will only be used if there is
not already a user defined interval set on the arc, and if the interval setting produces mesh edges which exceed the
maximum spanning angle. Figure 2 shows the effect of three different maximum arc_span settings on a small hole using
the pave scheme.

Automatic Specification of Intervals

473

Figure 2. Maximum arc_span settings of 90, 45 and 15 degrees respectively.

Default arc span setting: In addition to setting an automatic size factor, if there are otherwise no user-defined interval
sizes defined on an arc and no maximum arc_span has been set by the user when a tetrahedral mesh or triangle mesh
is defined, a maximum spanning angle of 60 degrees will be used. Removing the use of the arc_span setting can be
accomplished with the following:

Set Maximum Arc_Span Default

Note that once interval sizes have been defined when the entity has been meshed, it may be necessary to reset the
interval settings (reset {geom_list}) to use a new maximum arc span setting when remeshing.

475

Interval Matching

Each meshing scheme in CUBIT imposes a set of constraints on the intervals assigned to the curves bounding the entity
being meshed. For example, meshing any surface with quadrilaterals requires that the surface be bounded by an even
number of mesh edges. This constrains the intervals on the bounding curves to sum to an even number. For a collection
of connected surfaces and volumes, these interval constraints must be resolved globally to ensure that each surface will
be meshable with the assigned scheme. The global solution technique implemented in CUBIT is referred to as interval
matching.

When meshing a surface or volume, matching intervals is performed automatically. In some cases, interval matching
needs to be invoked manually, for example when meshing a collection of volumes, or a collection of surfaces not in a
common volume. Interval matching can also be called to check whether the assigned intervals and schemes are
compatible.

The command syntax for manually matching intervals is the following:

Match Intervals {Surface|Volume|Body|Group} <range>

Here the entity list can be any mixed collection of groups, bodies, volumes, surfaces and curves.

The interval matcher assigns intervals as close as possible to the user-specified intervals, while satisfying global interval
constraints. The goal is to minimize the relative change in pre-assigned intervals on all entities. Interval matching only
changes curves with interval firmness of soft or default .

Extra constraints can be added by the user to improve mesh quality locally; in particular, curves can be constrained to
have the same intervals using the command

Curve <range> Interval {Same|Different}

Specifying that curves have the "same" intervals stores them in a set. More curves may be added to an existing set, and
sets merged, by future commands. The current contents of the affected sets are printed after each command. A curve
may be removed from a set by specifying that its intervals are "different."

The interval assignment algorithm tries to find one good interval solution from among the possibly infinite set of solutions.
However, if many curves are hard-set or already meshed, there may be no solution. To improve the chances of finding a
solution, it is suggested that curves are soft-set whenever possible. Also, a solution might not exist due to the way the
local selections of corners and sides of mapped surfaces interact globally. If there is no solution, the following command
may help in determining the cause:

Match Intervals {Surface|Volume|Body|Group} <range> [Seed Curve <range>] [Assign Groups
[Only|Infeasible]] [Map|Pave]

Specifying Assign Groups will create groups that contain independent subproblems of the global problem. Specifying
Assign Groups Only will group independent subproblems, but the algorithm will not attempt to solve these subproblems.
Assign Groups Infeasible will put each independent subproblem with no solution into specially named groups. Often
poor corner choices and surface meshing schemes will be illuminated this way. If Map or Pave is specified, then only
subproblems involving mapping or paving constraints will be considered. If a Seed Curve is specified, then only those
subproblems containing that curve will be considered.

Advanced users may also wish to experiment with setting the following, which may change the interval solution slightly:

Set Match Intervals Rounding {on|off}

Set Match Intervals Fast {on|off}

Set Match Intervals Delta <interval_difference = 0.>

If set match intervals rounding is set to on, the intervals will be rounded to the nearest integer. If the setting is off, the
intervals will be rounded toward the user specified intervals.

If set match intervals fast is set to off a single curve will be fixed per iteration. Note in rare cases this may produce
better meshes. If set match intervals fast is set to on multiple curves will be fixed per iteration.

Cubit 13.2 User Documentation

476

Set match intervals delta allows the number of intervals assigned to a curve to be delta intervals away from optimal
unexpectedly. A larger value makes matching intervals faster, but the quality of the solution may be worse; Hint: try delta
= 1.0. Default is 0.0.

The user can also constrain the parity of intervals on curves:

{Curve|Surface|Volume} <range> Interval {Even | Odd}

If Even is specified, then during subsequent interval setting commands and during interval assignment, curves are forced
to have an even number of intervals. If the current number of intervals is odd, then it is increased by one to be even. If
Odd is specified then intervals may be either even or odd. Setting intervals to even is useful in problems where adjoining
faces are paved one by one without global interval assignment.

Rather than specifying a specific size or interval for a curve or surface, which may overconstrain the interval matcher, you
can specify an upper and lower bound that is acceptable. This would typically be used in a complex assembly where there
may be multiple intervals that may interact in order to get a compatible mapped/swept mesh through the assembly.

Surface <surface_id_range> {Interval|Size|Periodic Interval} {Lower|Upper} Bound {On|Off|<bound>}

477

Periodic Intervals

The number of intervals on a periodic surface, such as a cylinder, in the dimension that is not represented by a curve is
usually set implicitly by the surface size.

However, periodic intervals and firmness can be specified explicitly by the following commands:

Surface <range> Periodic Interval <intervals>

Surface <range> Periodic Interval {Default|Soft|Hard}

479

Relative Intervals

If the user needs fine control over mesh density, then for curvy or slanted sides of swept geometries, it is often useful to
treat curves as if they had a different length when setting interval sizes. For example, the user may wish to specify that a
slanting side curve and a straight side curve have the same "relative" length, despite their true length as shown in the
following figure. These are not interval matching constraints; interval matching may change intervals so that the user-
specified ratio does not hold exactly.

The relative lengths of curves are set with the following command:

{geom_list} Relative Length <size>

The following command is used to assign intervals proportional to these lengths:

{geom_list} Relative Interval <base_interval>

For a curve with relative length x, setting a relative interval of y produces xy intervals, rounded to the nearest integer.

481

Mesh Interval Preview

It is sometimes useful to view the nodal locations/intervals on curves graphically before meshing (which can take
considerably more time). The command to do this is:

Preview Mesh {Body|Volume|Surface|Curve|Vertex} <id_range> [Hard]

To clear the display of the temporary nodes, simply issue a "display" command. The purpose of the hard option is that
only curves that have an interval firmness of hard will be previewed.

483

Bias, Dualbias

Applies to: Curves

Summary: Meshes a curve with node spacing biased toward one or both curve ends.

Syntax:

Curve <range> Scheme Bias {Factor|First_Delta|Fraction} <double> [Start Vertex <range>] [preview]

Curve <range> Scheme Dualbias {Factor|First_Delta|Fraction} <double> [preview]

Curve <range> Scheme Bias Fine Size <double>
{Coarse Size <double> | Factor <double>} [Start Vertex <range>] [preview]

Curve <range> Scheme Dualbias Fine Size <double>
{Coarse Size <double> | Factor <double>} [preview]

Related Commands:

Curve <range> Reverse Bias

Set Maximum Interval <int>

See also Surface Sizing Function Type Bias

See also Curve Scheme Stretch

The main differences between scheme bias and stretch are the following: scheme stretch does not use strict geometric
series for node placement. If you specify scheme bias or dualbias using the "fine size" form, the interval count will be
hard-set to a value that fills in the curve.

Discussion:

The Bias and DualBias schemes space the curve mesh unequally, placing more nodes towards (or away from) the ends
of the curve according to a geometric progression. The ratio of successive edges is the "factor," which may be greater
than or less than one. For bias, the series starts at the first vertex of the curve, or the "start vertex" if specified. For
dualbias, the series starts at both ends of the curve and meets in the middle.

The command behaves differently depending on which set of parameters are specified. There are three basic variables:
the interval count, the bias factor, or the first edge size. The curve length is a given, fixed quantity. The user can specify
any two of these variables, and the third will be automatically determined.

If the "{Factor|First_Delta|Fraction}" form is specified, then the interval count is taken as a given. The interval count is
whatever was specified previously by an interval count or size command (see Interval Assignment). If "Factor" is
specified, then the first edge size will be automatically chosen so that the geometric progression of edges "fit" onto the
curve. If "first_delta" is specified, then the first edge length is exactly that absolute value, and the "factor" is automatically
chosen. If "fraction" is specified, then the first edge length is the curve length times that fraction, and again the "factor" is
automatically chosen.

If the "fine size" is specified, then the first edge length is exactly that absolute value. If the "factor" is specified, then the
interval count is automatically chosen. If an approximate coarse size is specified, then this also determines the factor, and
again the interval count is automatically chosen. If a surface sizing function type bias is used, then the curves of the
surface are sized using similar formulas.

If no start or end vertex is specified, the curve's start vertex is used as the starting point of the bias. (A curve's start vertex
can be identified by listing the curve from the "CUBIT>" prompt.)

If a curve, meshed with the bias scheme, needs to have its nodes distributed towards the opposite end, it can be easily
edited using the reverse bias command. Reversing the curve bias using this command is equivalent to setting a bias
factor equal to the inverse of the original bias factor.

The maximum interval setting allows the user to set a maximum number of intervals on any bias curve. This value is
doubled for a curve with a dualbias scheme. It can be easy to accidentally specify a very large number of intervals and
this setting allows the user to place an upper limit the number of intervals.

Cubit 13.2 User Documentation

484

The preview option will allow the user to preview mesh size and distribution on the curve before meshing.

The following figure shows the result of meshing edges with equal, bias and dualbias schemes.

485

Circle

Applies to: Surfaces

Summary: Produces a circle-primitive mesh for a surface

Syntax:

Surface <range> Scheme Circle [Interval <int> | Delta_r <double>] [fraction <double>]

Discussion:

The Circle scheme is used in regions that should be meshed as a circle. A "circle" consists of a single loop of bounding
curves containing an even number of intervals. Thus, the circle scheme can be applied to circles, ellipses, ovals, and
regions with "corners" (e.g. polygons). The bounding curves should enclose a convex region. Non-planar bounding loops
can also be meshed using the circle primitive provided the surface curvature is not too great. The mesh resembles that
obtained via polar coordinates except that the cells at the "center" are quadrilaterals, not triangles. See Figure 1 for an
example of a circle mesh. Radial grading of the mesh may be achieved via the optional [intervals] input parameter or by
specifying the radial size [delta_r] of the outermost element. The Fraction option has the range 0 < fraction < 1 and
defaults to 0.5. Fraction determines the size of the inner portion of the circle mesh relative to the total radius of the circle.

Figure 1. Circle Primitive Mesh

487

Curvature

Applies to: Curves

Summary: Meshes curves by adapting the interval size to the local curvature.

Syntax:

Curve <range> Scheme Curvature <double>

Discussion:

The value of <double> controls the degree of adaptation. If zero, the resulting mesh will have nearly equal intervals. If
greater than zero, the smallest intervals will correspond to the locations of largest curvature. If less than zero, the largest
intervals will correspond to the locations of largest curvature. The default value of <double> is zero. Straight lines and
circular arcs will produce meshes with near-equal intervals. The method for generating this mesh is iterative and may
sometimes not converge. If the method does not converge, either the <double> is too large (over-adaptation) or the
number of intervals is too small. Currently, the scheme does not work on periodic curves.

489

Equal

Applies to: Curves

Summary: Meshes a curve with equally-spaced nodes

Syntax:

Curve <range> Scheme Equal

Discussion:

See Interval Assignment for a description of how to set the number of nodes or the node spacing on a curve.

491

Hole

Applies to: Annular Surfaces

Summary: Useful on annular surfaces to produce a "polar coordinate" type mesh (with the singularity removed).

Syntax:

Surface <surface_id_range> Scheme Hole [Rad_intervals <int>] [Bias <double>] [Pair Node <id>
With Node <id>]

Discussion:

A polar coordinate-like mesh with the singularity removed is produced with this scheme. The azimuthal coordinate lines
will be of constant radius (unlike scheme map) The number of intervals in the azimuthal direction is controlled by setting
the number of intervals on the inner and outer bounding loops of the surface (the number of intervals must be the same
on each loop). The number of intervals in the radial direction is controlled by the user input, rad_intervals (default is one).

A bias may be put on the mesh in the radial direction via the input parameter bias. The default bias of 0 gives a uniform
grading, a bias less than zero gives smaller radial intervals near the inner loop, and a bias greater than zero gives smaller
radial intervals near the outer loop.

The correspondence between mesh nodes on the inner and outer boundaries is controlled with the pair node "<loop node-
id> with node <loop node-id>" construct. One id on the inner loop and one id on the outer loop should be given to connect
the two nodes by a radial mesh line. Not choosing this option may result in sub-optimal node pairings with possible
negative Jacobians. To use this option, mesh the inner and outer curve loops and then determine the mesh node ids.

Figure 1. Example of Hole Scheme

493

Mapping

Applies to: Surfaces, Volumes

Summary: Meshes a surface/volume with a structured mesh of quadrilaterals/hexahedra.

Syntax:

{Volume|Surface} <range> Scheme Map

Discussion:

A structured mesh is defined as one where each interior node on a surface/volume is connected to 4/6 other nodes.
Mappable surfaces contain four logical sides and four logical corners of the map; each side can be composed of one or
several geometric curves. Similarly, mappable volumes have six logical sides and eight logical corners; each side can
consist of one or several geometric surfaces. For example, in Figure 1 below, the logical corners selected by the algorithm
are indicated by arrows. Between these vertices the logical sides are defined; these sides are described in Table 1.

Figure 1. Scheme Map Logical Properties

Table 1. Listing of Logical Sides

Logical Side Curve Groups

Side 1 Curve 1

Side 2 Curve 2

Side 3 Curve 3, Curve 4, Curve 5

Side 4 Curve 6

Interval divisions on opposite sides of the logical rectangle are matched to produce the mesh shown in the right portion of
Figure 1. (i.e. The number of intervals on logical side 1 is equated to the number of intervals on logical side 3). The
process is similar for volume mapping except that a logical hexahedron is formed from eight vertices. Note that the
corners for both surface and volume mapping can be placed on curves rather than vertices; this allows mapping surfaces
and volumes with less than four and eight vertices, respectively. For example, the mapped quarter cylinder shown in
Figure 2 has only five surfaces.

Cubit 13.2 User Documentation

494

Figure 2. Volume Mapping of a 5-surfaced volume

The mapper works on a bicubic interpolation of the points on the boundary to represent the surface. There may be times
that those points may not be on the surface exactly if the surface is not suitable for bicubic interpolation. The Mapping
Constraint flag tells the mapper to relax the nodes to the geometry or not.

Set Mapping Constraint {ON|off}

495

Pave

Applies to: Surfaces

Summary: Automatically meshes a surface with an unstructured quadrilateral mesh.

Syntax:

Surface <range> Scheme Pave Related Commands:

[Set] Paver Diagonal Scale <factor (Default = 0.9)> [set] Paver Grid Cell <factor (Default = 2.5)>[set]
Paver LinearSizing {Off | ON} Surface <range> Sizing Function Type ...

[Set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}

[Set] Paver Cleanup {ON|Off|Extend}

Discussion:

Paving (Blacker, 91; White, 97) allows the meshing of an arbitrary three-dimensional surface with quadrilateral elements.
The paver supports interior holes, arbitrary boundaries, hard lines, and zero-width cracks. It also allows for easy
transitions between dissimilar sizes of elements and element size variations based on sizing functions. Figure 1 shows the
same surface meshed with mapping (left) and paving (right) schemes using the same discretization of the boundary
curves.

Figure 1. Map (left) and Paved (right) Surface Meshes

Element Shape Improvement

When meshing a surface geometry with paving, clean-up and smoothing techniques are automatically applied to the
paved mesh. These methods improve the regularity and quality of the surface mesh. By default the paver uses its own
smoothing methods that are not directly-callable from CUBIT. Using one of CUBIT's callable smoothing methods in place
of the default method will sometimes improve mesh quality, depending on the surface geometry and specific mesh
characteristics. If the paver produces poor element quality, switching the smoothing scheme may help. This is done by the
command:

[set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}

When the "Smooth Scheme" is selected, the smoothing scheme specified for the surface will be used in place of the
paver's smoother. See "Mesh Smoothing" for more information about the available smoothing schemes in CUBIT.

Controlling Flattening of Elements

The smoothers flatten elements, such as inserted wedges, that have two edges on the active mesh front. In meshes
where this "corner" is a real corner, flattening the element may give an unacceptable mesh. The following command
controls how much the diagonal of such an element is able to shrink.

[set] Paver Diagonal Scale <factor (Default = 0.9)>

Cubit 13.2 User Documentation

496

The range of for the scale factor is 0.5 to 1.0. A scale factor of 1.0 will force the element to be a parallelogram as long as it
is on the mesh front. A value of 0.5 will allow the diagonal to be half its calculated length. The element may became
triangular in shape with the two sides on the mesh front being collinear.

Controlling the Grid Search for Intersection Checking

The paver divides the bounding box of a surface into a number of cells based on the average length of an element. It uses
these cells to speed intersection checking of new element edges with the existing mesh. If both very long and very short
edges fall in the same area, it is possible that a long edge which spans the search region is excluded from the intersection
check when it does intersect the new element. The following command allows the user to adjust the size of the grid cells.

[set] Paver Grid Cell <factor (Default = 2.5)>

The grid cell factor is a multiplier applied to the average element size, which then becomes the grid cell size. The
surface's bounding box is divided by this cell size to determine the number of cells in each direction. A larger cell size
means each cell contains more nodes and edges. A smaller cell size means each cell has fewer nodes and edges. A
larger cell size forces the intersection algorithm to check more potential intersections, which results in long paver times. A
smaller cell size gives the intersection algorithm few edges to check (faster execution) but may result in missed
intersections where the ratio of long to short element edges is great. Increase this value if the paver is missing
intersections of elements.

Controlling the Paver Sizing Function

The paving algorithm will automatically select a "linear" sizing function if the ratio the largest element to the smallest is
greater than 6.0 and no other sizing function is specified for the surface. This is usually desirable. When it is not, the user
can change this behavior with the command:

[set] Paver LinearSizing {Off | ON}

Setting paver linear sizing to "off" will keep the default behavior. The size of the element will be based on the side(s) of the
element on the mesh front. For a discussion of sizing functions, including how to automatically set up size transitions, see
Adaptive Meshing.

Controlling Paver Cleanup

The paver uses a mesh clean-up process to improve mesh quality after the initial paving operation. Clean-up applies local
connectivity corrections to increase the number of interior mesh nodes that are connected to four quadrilaterals.
Sometimes it fails to improve the mesh. The following command allows the user to control some aspects of the clean-up
process.

[Set] Paver Cleanup {ON|Off|Extend}

The default option is to clean-up the mesh. The off option will turn clean-up off and may give an invalid mesh. The extend
option enables a non-local topology replacement algorithm. The command without any option will list the current setting.

The extend option attempts to group several defective nodes in a region that may be replaced with a template that has
fewer defects. The images below show a mesh before and after using this option.

Pave

497

Figure 2. Paved mesh before using cleanup extend

Cubit 13.2 User Documentation

498

Figure 3. Paved mesh after using cleanup extend

499

Pentagon

Applies to: Surfaces

Summary: Produces a pentagon-primitive mesh for a surface

Syntax:

Surface <range> Scheme Pentagon

Discussion:

The pentagon scheme is a meshing primitive for 5-sided regions. It is similar to the triprimitive and polyhedron schemes,
but is hard-coded for 5 sided surfaces.

The pentagon scheme indicates the region should be meshed as a pentagon. The scheme works best if the shape has 5
well-defined corners; however shapes with more corners can be meshed. The algorithm requires that there be at least 10
intervals (2 per side) specified on the curves representing the perimeter of the surface. In addition, the sum of the intervals
on any three connected sides must be at least two greater than the sum of the intervals on the remaining two sides.
Figure 1 shows two examples of pentagon meshes.

Figure 1. Examples of Pentagon Scheme Meshes

Cubit 13.2 User Documentation

500

501

Pinpoint

Applies to: Curves

Summary:Meshes a curve with node spacing specified by the user.

Syntax:

Curve <range> Scheme Pinpoint Location <list of doubles>

Discussion:

The Pinpoint scheme allow the user to specify exactly where on a curve to place nodes. The list of doubles are absolute
positions, measured from the start vertex. The user can enter as many as needed, and they do not need to be in
numerical order. Below is an example of a curve that has been meshed using the following scheme:

curve 2 scheme pinpoint location 1 4 5 6 6.2 6.4 6.6 9:

503

Polyhedron

Applies to: Surfaces and Volumes.

Summary: Produces an arbitrary-sided block primitive mesh for a surface or volume.

Syntax:

Volume <range> Scheme Polyhedron

Surface <range> Scheme Polyhedron

Discussion:

The polyhedron scheme is a meshing primitive for 2d and 3d n-sided regions. This is similar to the triprimitive ,
tetprimitive, and pentagon schemes, except rather than 3, 4, or 5 sides, it allows an arbitrary number of sides. The
scheme works best on convex regions. Surfaces must have only one loop, and each vertex must be connected to exactly
two curves on the surface (e.g., no hardlines). Volumes must have only one shell, each vertex must be connected to
exactly three surfaces on the volume, and each surface should be meshed with scheme polyhedron. There are some
interval assignment requirements as well, which should be automatically handled by CUBIT.

If the polyhedron scheme is specified for the volume, then the surfaces of the volume are automatically assigned scheme
polyhedron as well, unless they were hard-set by the user. Schemes should be specified on all volumes of an assembly
prior to meshing any of them. Scheme polyhedron attaches extra data to volumes; if Cubit is behaving strangely, the user
may need to explicitly remove that data with a reset volume all, or similar command.

Scheme polyhedron was designed for assemblies of material grains, where each volume is roughly a Voronoi region, and
the assembly is a periodic space-filling model (tile). Figure 1 shows two examples of polyhedron meshes.

Cubit 13.2 User Documentation

504

Figure 1. Examples of Polyhedron Scheme Meshes

505

Sphere

Applies to: Volumes topologically equivalent to a sphere and having one surface.

Summary: Generates a radially-graded hex mesh on a spherical volume.

Syntax:

Volume <range> Scheme Sphere [Graded_interval <int>] [Az_interval <int>] [Bias <val>] [Fraction
<val>]

Discussion:

This scheme generates a radially-graded mesh on a spherical volume having a single bounding surface. The mesh is a
straightforward generalization of the circle scheme for surfaces. The number of azimuthal intervals around the equator is
controlled by the az_interval input parameter. The number of radial intervals in the outer portion of the sphere is controlled
by the graded_interval input parameter. Azimuthal mesh lines in the outer portion of the sphere have constant radius. The
inner portion of the volume mesh forms a cube. The bias parameter controls the amount of radial grading in the outer
portion of the mesh (default=1 gives a uniform mesh). The fraction parameter (between 0 and 1) determines what fraction
of the sphere is occupied by the inner cube.

Figure 1. Sphere Scheme Example

507

STransition

Applies to: Surfaces

Summary:

Produces a simple transitional mapped mesh.

Syntax:

Surface <surface_id_range> Scheme STransition [Triangle] [Coarse]

Discussion:

The STransition scheme transitions a mesh from one element density to another across a surface. This scheme is
particularly helpful when the Paving scheme produces a poor mesh. The following two figures show a specific case where
the STransition scheme may offer an improvement.

Pave scheme

STransition scheme

The coarse option forces the mesh to transition to a coarser mesh in the first layer.

STransition scheme with coarse option

For triangular surfaces, the STransition scheme with the triangle option will produce similar results when compared to the
Triprimitive scheme. However, STransition is capable of handling more varied interval settings. The following triangle fails
when using the Triprimitive scheme but succeeds with the STransition scheme.

Cubit 13.2 User Documentation

508

STransition scheme on a triangular surface with intervals
set to 3, 3, and 6.

The figures below show the STransition meshing scheme response to different shapes and interval settings.

STransition scheme on a rectangular surface with three
intervals set to 2 and one set to 4.

STransition scheme on a rectangular surface with
intervals set to 2, 3, 4, and 5.

The user also has the option of specifying END or SIDE surface vertex types.

STransition

509

STransition scheme on a hexagon surface with five intervals
set to 2, one interval set to 8, and user specified endpoints.

Note, that the Centroid Area Pull smoothing algorithm sometimes gives better results than the default Winslow smoothing
algorithm for STransition meshes.

511

Stretch

Applies to: Curves

Summary: Permits user to specify the exact size of the first and/or last edges on a curve.

Syntax:

Curve <range> Scheme Stretch [First_size <double>] [Last_size <double>] [Start Vertex <id>]

Curve <range> Scheme Stretch [Stretch_factor <double>] [Start Vertex <id>]

Related Commands:

Scheme Bias and Dualbias.

Discussion:

This scheme allows the user to specify the exact length of the first and/or last edge on a curve mesh. Intermediate edge
lengths will vary smoothly between these input values. Reasonable values for these parameters should be used (for
example, the sizes must be less than the total length of the curve). If last_size is input, first_size must be input also. If
stretch_factor is input, neither first_size nor last_size can be input. This scheme does not currently work on periodic
curves.

513

Stride

Applies to: Curves

Summary: Mesh a curve with node spacing based on a general field function.

Syntax:

Curve <range> Scheme Stride

Discussion:

The ability to specify the number and location of nodes based on a general field function is also available in CUBIT. With
this capability the node locations along a curve can be determined by some field variable (e.g. an error measure). This
provides a means of using CUBIT in adaptive analyses. To use this capability, a sizing function must have been read in
and associated to the geometry (See Exodus II -based field function for more information on this process). After a sizing
function is made available, the stride scheme can be used to mesh the curves.

515

Submap

Applies to: Surfaces, Volumes

Summary: Produces a structured mesh for surfaces/volumes with more than 4/6 logical sides

Syntax:

{Surface|Volume} <range> Scheme Submap

Related Commands:

{Surface|Volume} <range> Submap Smooth <on|off>

Discussion:

Submapping (Whiteley, 96) is a meshing tool based on the surface mapping capability discussed previously, and is suited
for mesh generation on surfaces which can be decomposed into mappable subsurfaces. This algorithm uses a
decomposition method to break the surface into simple mappable regions. Submapping is not limited by the number of
logical sides in the geometry or by the number of edges. The submap tool, however is best suited for surfaces and
volumes that are fairly blocky or that contain interior angles that are close to multiples of 90 degrees.

An example of a volume and its surfaces meshed with submapping is shown in Figure 1.

Figure 1. Quadrilateral and Hexahedral meshes generated by submapping

Like the mapping scheme, submapping uses vertex types to determine where to put the corners of the mapped mesh
(See Surface Vertex Types). For surface submapping, curves on the surface are traversed and grouped into " logical
sides " by a classification of the curves position in a local "i-j" coordinate system.

Volume submapping uses the logical sides for the bounding surfaces and the vertex types to construct a logical "i-j-k"
coordinate system, which is used to construct the logical sides of the volume. For surface and volume submapping, the
sides are used to formulate the interval constraints for the surface or volume.

Figure 2 shows an example of this logical classification technique, where the edges on the front surface have been
classified in the i-j coordinate system; the figure also shows the submapped mesh for that volume.

Cubit 13.2 User Documentation

516

Figure 2. Scheme Submap Logical Properties

In special cases where quick results are desired, submap cornerpicking can be set to OFF. The corner picking will be
accomplished by a faster, but less accurate algorithm which sets the vertex types by the measured interior angle at the
given vertex on the surface. In most cases this is not recommended.

Set Submap CornerPicking {ON|off}

After submapping has subdivided the surface and applied the mapped meshing technique mentioned above, the mesh is
smoothed to improve mesh quality. Because the decomposition performed by submapping is mesh based, no geometry is
created in the process and the resulting interior mesh can be smoothed. Sometimes smoothing can decrease the quality
of the mesh; in this case the following command can turn off the automatic smoothing before meshing:

{Surface|Volume} <range> Submap Smooth <on|off>

Surface submapping also has the ability to mesh periodic surfaces such as cylinders. An example of a periodic surface
meshed with submapping is shown in Figure 3. The requirement for meshing these surfaces is that the top and bottom of
the cylinder must have matching intervals.

Figure 3. Periodic Surface Meshing with Submapping

For periodic surfaces, there are no curves connecting the top and bottom of the cylinder. Setting intervals in this direction
on the surface can be done by setting the periodic interval for that surface (see Interval Assignment). No special
commands need to be given to submap a periodic surface, the algorithm will automatically detect the fact that the surface
is periodic. Currently, periodic surfaces with interior holes are not supported.

517

Surface Vertex Types

 Surface Vertex Commands

 Listing and Drawing Vertex Types

 Triangle Vertex Types

 Adjusting the Automatic Vertex Type Selection Algorithm

 Volume Curve Types

Several meshing algorithms in CUBIT "classify" the vertices of a surface or volume to produce a high quality mesh. This
classification is based on the angle between the edges meeting at the vertex, and helps determine where to place the
corners of the map, submap or trimesh, or the triangles in the trimap or tripave schemes. For example, a surface mapping
algorithm must identify the four vertices of the surface that best represent the surface as a rectangle. Figure 1 illustrates
the vertex angle types for mapped and submapped surfaces, and the correspondence between vertex types and the
placement of corners in a mapped or submapped mesh.

Figure 1. Angle Types for Mapped and Submapped Surfaces: An End vertex is contained in one element, a Side
vertex two, a Corner three, and a Reversal four.

The surface vertex type is computed automatically during meshing, but can also be specified manually. In some cases,
choosing vertex types manually results in a better quality mesh or a mesh that is preferable to the user. Vertex types have
a firmness, just as meshing schemes do. Automatically selected vertex types are soft, while user-set vertex types are
hard. Instead of a type, an angle in degrees can be specified instead.

Surface Vertex Commands

Vertex types are set using the following commands:

Surface <surface_id> Set [Vertex <vertex_id_range> [Loop_index <int>]] Type
{End|Side|Corner|Reversal}

Surface <surface_id> Set Vertex [<vertex_id_range> [Loop_index <int>]] Angle <value>

Surface <surface_id> Set [Vertex <vertex_id_range> [Loop_index <int>]] Type {Default|Soft|Hard}

If no vertices are specified, the command is applied to all vertices of each surface. The loop_index is used only for
vertices that are on the boundary of a single surface more than once.

Note that a vertex may be connected to several surfaces and its classification can be different for each of those surfaces.

The influence of vertex types when mapping or submapping a surface is illustrated in Figure 2. There, the same surface is
submapped in two different ways by adjusting the vertex types of ten vertices.

Cubit 13.2 User Documentation

518

Figure 2. Influence of vertex types on submap meshes; vertices whose types are changed are indicated above,
along with the mesh produced; logical submap shape shown below.

Listing and Drawing Vertex Types

Listing a surface lists the types of the vertices. The vertex type settings may also be drawn with the following commands:

Draw Surface <surface_id_range> {Vertex Angle|Vertex Type}

Triangle Vertex Types

For a surface that will be meshed with scheme trimap or tripave, the user may specify the angle below which triangles are
inserted:

Surface <surface_id_range> Angle <angle>

The user may also set whether to add a triangle at a particular vertex:

Surface <surface_id> Set [Vertex <vertex_id_range> [Loop_index <int>]] Type {Triangle|Nontriangle}

Adjusting the Automatic Vertex Type Selection Algorithm

The user may specify the maximum allowable angle at a corner with the following command:

Set {Corner|End} Angle <degrees>

The user may also give greater priority to one automatic selection criteria over the others by changing the following
absolute weights. The corner weight considers how large angles are at corners. The turn weight considers how L-
shaped the surface is. The interval weight considers how much intervals must change. The large angle weight affects
only auto-scheme selection: surfaces with a large angle will be paved instead. Each weight's default is 1 and must be
between 0 and 10. The bigger a weight the more that criteria is considered.

Set Corner Weight <value>

Set Turn Weight <value>

Set Interval Weight <value>

Set Large Angle Weight <value>

Surface Vertex Types

519

An illustration of a mesh produced by the submapping algorithm is shown in Figure 2. The meshes produced by
submapping on the left and right result from adjusting the vertex types of the eight vertices shown.

Volume Curve Types

When sweeping, a 2.5 dimensional meshing scheme, curves perpendicular to the sweep direction can have a type with
respect to the volume. These types are usually automatically selected. The following commands are useful:

Draw Volume <surface_id_range> {Curve Angle|Curve Type}

List Volume <volume_id> Curve Type

Volume <volume_id> Set [Curve <curve_id_range>] Type {End|Side|Corner|Reversal}

Volume <volume_id> Set [Curve <curve_id_range>] Type {Default|Soft|Hard}

521

Sweep

Applies to: Volumes

Summary: Produces an extruded hexahedral mesh for 2.5D volumes.

Syntax:

Volume <range> Scheme Sweep [Source [Surface] <range>] [Target [Surface] <range>]
[Propagate_bias]
[Sweep_smooth {auto | smart_affine | linear | residual | winslow}]
[Sweep_transform {LEAST_SQUARES | Translate}]
[Autosmooth_target {on | OFF}]

Volume <range> Scheme Sweep Vector <xval yval zval>

Related Commands:

Set Multisweep [On|Off]

Multisweep Smoothing {ON|Off}

Multisweep Volume <range> Remove

Volume <range> Redistribute Nodes {ON|off}

Discussion:

The sweep algorithm (Knupp, 98, Scott et.al, 05) can sweep general 2.5D geometries and can also do pure translation or
rotations. A 2.5D geometry is characterized by source and target surfaces which are topologically similar. The hexahedral
mesh is swept (extruded) between source and target along a single logical axis. Bounding the swept hexahedra between
source and target surfaces, are the linking surfaces. Figures 1 and 2 show examples of source, target and linking
surfaces.

Command Options: The user can specify the source and target surfaces. The user can also specify a geometric vector
approximating the sweep direction, and let CUBIT determine the source and target surfaces. The user can specify just the
source surfaces, and let cubit guess the target, or "scheme auto" can also be used.

Figure 1. Sweep Volume Meshing

Cubit 13.2 User Documentation

522

Figure 2. Multiple Linking Surface Volume Meshing with Scheme Sweep

In general, the procedure for using the sweep scheme is to first mesh the source surfaces. Any surface meshing scheme
may be employed. Figure 1 displays swept meshes involving mapped and paved source surfaces. Linking surfaces must
have either mapping or submapping schemes applied. The sweep algorithm can also handle multiple surfaces linking the
source surface and the target surfaces. An example of this is shown in Figure 2. Note that for the multiple- linking-surface
meshing case, the interval requirement is that the total number of intervals along each multiple edge path from the source
surface to the target surface must be the same for each path. Once the appropriate mesh is applied to the source surface
and intervals assigned, the mesh command may be issued.

In many cases auto-scheme selection can simplify this process by recognizing sweepable geometries and automatically
select source and target surfaces. If the source and target surfaces are not specified, CUBIT attempts to automatically
select them. CUBIT also automatically sets curve and vertex types in an attempt to make the mesh of the linking surfaces
lead from a source surface to a target surface. These automatic selections may occasionally fail, in which case the user
must manually select the source/target surfaces, or some of the curve and vertex types. After making some of these
changes, the user should again set the volume scheme to sweep and attempt to mesh.

Occasionally the user must also adjust intervals along curves, in addition to the usual surface interval matching
requirements. For a given pair of source/target surfaces, there must be the same number of hexahedral layers between
them regardless of the path taken. This constrains the number of edges along curves of linking surfaces. For example, in
Figure 1 right, the number of intervals through the holes must be the same as along the outer shell.

Propagate_bias Option: The propagate_bias option attempts to preserve the source bias by propagating bias mesh
schemes from the curves of the source surface to the curves of the target surface.

Sweep_transform Option: Swept meshes are created by projecting points between the source and target surfaces using
affine transformations and then connecting them to form hexahedra. The method used to calculate the affine
transformations is set using the sweep_transform option.

Least_squares: If the least_squares option is selected then affine transformations between the
source and target are calculated using a least squares method.

translate: If the translate option is selected then a simple translate affine transformation is calcuated
based upon the centroid of the source and target.

Sweep_smooth Option: To ensure adequate mesh quality, optional smoothing schemes are available to reposition the
interior nodes. The sweep tool permits five types of smoothing that are set with the following command prior to meshing a
volume whose mesh scheme is sweep:

Linear: If this option is selected, no layer smoothing is performed. The node positions are determined
strictly by the affine transformation from the previous layer. Good quality swept meshes can be
constructed using “linear” provided the volume geometry and meshed linking surfaces permit the
volume mesh to be created by a translation, scaling, and/or rotation of the source mesh. Volumes for
which this is nearly true may also produce acceptable quality with “linear”. As one would expect, this
option generates swept meshes more quickly than the other sweep smooth options. This option is
rarely needed since the next option produces better results with little time penalty.

Sweep

523

Smart_affine: The “smart_affine” option does minimal smoothing of the interior nodes. Affine
transformations are used to project the source and target surfaces to the middle surface of the
volume. The position of the middle surface nodes is the average of the projected nodes from the
source and target surfaces. The error in projecting from source and target is computed, and this error
is linearly distributed back to the source and target.

Residual: The “residual” method is often used for meshing volumes that cannot be swept with the
“smart linear” method. It tends to produce better quality meshes than the “smart linear” method while
running faster than the Winslow-based smoother. The sweeping algorithm uses an affine
transformation to calculate the interior nodes’ positions, but the mesh on the linking surface
determines the positions of the nodes on the boundary of the layer. For the “residual” method, CUBIT
calculates corrective adjustments for interior nodes using the “residuals” from boundary nodes. The
“residual” is defined as the distance between the boundary node’s position (as determined by the
surface mesh) and the boundary node’s ideal position (as determined by the affine transformation of
the previous layer). Cubit computes the residual forward from the source and backward from the
target to get best the possible node position.

Winslow: Smooth scheme “winslow” smooths each layer using a weighted, elliptic smoother. The
weights are computed from the source mesh; they help maintain any biased spacing that occurs on
the source mesh. For example, one might want to use the “winslow” option if the source was a biased
mesh that was created using scheme circle. The biasing of the outer elements of the source mesh
may be destroyed if one of the other smooth options is used. The interior nodes are initially place
using the residual method.

AUTO: This is the default for the sweep_smooth option. “auto” causes the Sweeper to automatically
choose between “smart_affine” and “residual.” Auto will choose “off” if the layer needs little or no
smoothing or “residual” if it needs smoothing. Scheme “auto” does not guarantee that no negative
Jacobians are produced. This option produces acceptable results in most cases. If it fails to produce
a quality mesh, then choose one of the other sweep smooth options.

If none of these smooth schemes result in adequate mesh quality, one can consider trying one of the
volume smoothing schemes such as condition number or mean ratio.

Autosmooth_target Option: With this option turned on the target surface mesh is smoothed before the volume is swept.

Multisweep

While the basic sweeping algorithm requires a single target surface, the sweeping algorithm can also handle multiple
target surfaces. The multisweep algorithm works by recognizing possible mesh and topology conflicts between the source
and target surfaces and works to resolve these conflicts through the use of the virtual geometry capabilities in CUBIT.
Figure 4 shows some examples of volumes which have been meshed with the multisweep algorithm.

Cubit 13.2 User Documentation

524

Figure 4. Examples of Multisweep meshes.

The multisweep algorithm is an addi

Linear: If this option is rce and/or target surfaces are omitted from the scheme setting command,
CUBIT will determine source and target surfaces (See Automatic Scheme Selection). Sweeping can
be further automated using the "sweep groups" command.

 Limitations: Not all geometries are sweepable. Even some that appear sweepable may not be,
depending on the linking surface meshes. Highly curved source and target surfaces may not be
meshable with the current sweep algorithm.

Sweep

525

Grouping Sweepable Volumes

Swept meshing relies on the constraint that the source and target meshes are topologically identical
or the target surface is unmeshed. This results in there being dependencies between swept volumes
connected through non-manifold surfaces; these dependencies must be satisfied before the group of
volumes can be meshed successfully. For example, if the model was a series of connected cylinders,
the proper way to mesh the model would be to sweep each volume starting at the top (or bottom) and
continuing through each successive connected volume.

With larger models and with models that contain volumes that require many source surfaces, the
process of determining the correct sweeping ordering becomes tedious. The sweep grouping
capability computes these dependencies and puts the volumes into groups, in an order which
represents those dependencies. The volumes are meshed in the correct order when the resulting
group is meshed.

To compute the sweep dependencies, use the command:

Group Sweep Volumes

This will create a group named "sweep_groups", which can then be meshed using the command:

Mesh sweep_groups

In some automated meshing systems, the source and target surfaces are named using a naming
pattern. For example, all source surfaces might be given names "xxx.source" and all target surfaces
might be named "xxx.target". This allows the automated setting of the sweep direction based on
predetermined names rather than ids. The following command is used to set the source and targets
based on the naming pattern.

Set {Source|Target} Surface Pattern '<pattern>' [Include Volume Name]

The pattern is checked against all surfaces in the model using a simple case-sensitive substring
match. All surfaces which contain that string of letters in their name will be designated as either a
source or target surface, depending on which option the user specifies. For example:

br x 10
surface 1 name 'brick.top'
surface 2 name 'brick.bottom'
set source surface pattern 'top'
set target surface pattern 'bottom'
volume 1 scheme sweep
list volume 1 brief

Node Redistribution

Volume <range> redistribute nodes {ON|off}

With redistribute set to ON, the boundary nodes of a mappable surface are moved until the spacing
between the nodes are equivalent on the two opposing curves. In other words, the parametric values
of the nodes lying on the two opposite curves are matched.

Redistribute option ON will assist in avoiding the skewness of the mapped mesh. In the below
examples, the linking surfaces are meshed using mapped scheme, and with redistribute option ON,
the skewness is significantly avoided (see figures (4) and (5)).

Note:

1. Redistribute option ON will affect all mapped surfaces, not just the linking surfaces of a
swept volume. Even though the example below shows a swept volume, the command can
be used independent of the sweeping command. That is, it can be used while meshing
surface models that contain mappable surfaces.

2. If the linking surfaces of a swept mesh contain submappable surfaces, then the affect of
redistribute option ON is generally not seen. The current implementation is restricted to
mappable surfaces only and doesn’t handle submappable surfaces. In the future, we should
be able to easily extend the redistribute option to submappable surfaces.

Cubit 13.2 User Documentation

526

Figure 1 - Linking surfaces of a many-to-one sweepable solid (shown in green) is mappable

Figure 2 - Highly skewed elements on the linking mapped surface with 'redistribute nodes
OFF'

Sweep

527

Figure 3 - Quality of mesh with 'Redistribute Nodes OFF'

Figure 4 - High skew on the linking mapped surface can be avoided with 'Redistribute Nodes
ON'

Cubit 13.2 User Documentation

528

Figure 5 - Quality of mesh with 'Redistribute Nodes ON'

529

TetMesh

Applies to: Volumes

Summary: Automatically meshes a volume with an unstructured tetrahedral mesh.

Syntax:

Volume <range> Scheme TetMesh

Related Commands:

[Set] Tetmesher Optimize Level <level>

[Set] Tetmesher Optimize Overconstrained {on|OFF}

[Set] Tetmesher Optimize Sliver {on|OFF}

[Set] Tetmesher Optimize Default

[Set] Tetmesher Boundary Recovery {on|OFF}

[Set] Tetmesher Interior Points {ON|off}

THex Volume All

Volume <volume_id> Tetmesh Respect {Face|Tri|Edge|Node} <range>

Volume <volume_id> Tetmesh Respect Clear

Volume <volume_id> Tetmesh Respect File '<filename>'

Volume <volume_id> Tetmesh Respect Location (options)

Tetmesh Tri <range> [Make {Block|Group} [<id>]]

Tetmesh Tri <range> {Add|Replace} {Block|Group} <id>

Discussion

The TetMesh scheme fills an arbitrary three-dimensional volume with tetrahedral elements. The surfaces are first
triangulated with one of the triangle schemes (TriMesh or TriAdvance) or a quadrilateral scheme with the quadrilaterals
being split into two triangles.

The Distene/INRIA tet-mesher is included in CUBIT. This is a robust and fast tetrahedral mesher developed in France at
INRIA and distributed and maintained by Distene. Figure 1 shows a volume filled with tetrahedra by this algorithm.

Cubit 13.2 User Documentation

530

Figure 1. Tetrahedral Mesh generated with the TetMesh scheme. Surface meshing was performed with the
TriAdvance scheme.

Cubit uses three of the four Distene/INRIA tetmesher modules: standard, boundary recovery and anisotropic-scalar. The
fourth module, anisotropic-tensor is not available to the Cubit user at this time. If you need element sizing based on a
tensor field, please contact cubit-help@sandia.gov.

The boundary recovery module differs from the standard one in that it allows the surface mesh constraints to be relaxed
during tet-meshing. Once tet-meshing is done, the surface mesh constraints are reapplied. This allows tet-meshing of
volumes bounded by poor quality surface triangularizations. The anisotropic-scalar module allows the user to apply a
scalar sizing function to the volume, and this size is respected, as far as possible, throughout the mesh.

The standard and boundary recovery modules are at revision 4.2, while the anisotripic modules are at revision 3.5.

Tetmesher Options

The user may set options that control the operation of the tet-meshing algorithms. These tetmesher options are global
settings and apply to all tetmeshes generated until the option is changed by the user.

The Tetmesher Optimize options listed below are only available in the standard module and will be ignored by the others.

[Set] Tetmesher Optimize Level <level>

The Tetmesher Optimize Level command allows the user to control the degree of optimization. The optimization level is
an integer in the range 0 to 6, which represent optimization levels of none, light, medium, standard, strong, heavy, and
extreme. Greater values will result in greater computation time. The default is 3 or standard optimization.

[Set] Tetmesher Optimize Overconstrained {on|OFF}

The Tetmesher Optimize Overconstrained command enables or disables an additional optimization step that attempts to
eliminated tetrahedral elements that share multiple surface triangles. This optimization may improve the mesh for finite
element analysis. The default setting is off.

mailto:cubit-help@sandia.gov

TetMesh

531

[Set] Tetmesher Optimize Sliver {on|OFF}

The Tetmesher Optimize Sliver command enables or disables an additional optimization step that attempts to eliminate
tetrahedral sliver elements. The default setting is off.

[Set] Tetmesher Optimize Default

The Tetmesher Optimize Default command restores the default optimizations values: level = 3 (standard),
overconstrained = off, and sliver = off.

[Set] Tetmesher Boundary Recovery {on|OFF}

The Tetmesher Boundary Recovery command allows the user to enable or disable the use of the boundary recovery
module. By default, the standard module is used if no sizing function is declared for the volume; the anisotropic-scalar
module is used if one is declared. Cubit selects the boundary recovery module if the minimum surface element condition
number is less than 0.2. This option allows the user to force Cubit to select the boundary recovery module instead of the
standard module even if the minimum surface element condition number is greater than 0.2. The default setting is off.

[Set] Tetmesher Interior Points {ON|off}

Infrequently, the user desires a model with as few interior points as possible. The Tetmesher Interior Points command
allows the user to enbale or disable the insertion of interior points. If interior points are disable, the tetmesher will attempt
to mesh the volume using only the exterior points. This may not be possible and a few points will be inserted to allow tet-
meshing to complete. The default setting is on.

Using tets as the basis of an unstructured hexahedral mesh

Tet meshing can be used to generate hexahedral meshes using the THex command. Each of the tetrahedron can be
converted into 4 hexes, producing a fully conformal hexahedral mesh, albeit of poorer quality. These meshes can often be
used in codes that are less sensitive to mesh quality and mesh directionality. The THex command requires that all tets in
the model be converted to hexahedra with the same command.

Conforming the tetmesh to internal features

In some cases it is necessary for the finite element mesh to conform to internal features of the model. The tetmesh
scheme provides this capability provided the tetmesh respect command has been previously issued to define the features
that will be respected.

Volume <volume_id> Tetmesh Respect {Face|Tri|Edge|Node} <range>

The tetmesh respect command allows the user to specify mesh entities that will be part of a tetrahedral mesh. These
faces, triangles, edges, or nodes are inside the volume since all surface mesh features will appear in the final tetrahedral
mesh by default. These mesh entities specified to be respected can be generated from other meshing commands on free
vertices, curves, or surfaces.

Figure 2. Example of using tetmesh respect to ensure node 9 is captured in the tetmesh.

Figure 2 is an example of using the tetmesh respect command to enforce a node at the center of a cube. Node 9 in this
example was generated by first creating a free vertex at the center location and meshing the vertex. (mesh vertex 9). The
following commands would then be used to generate the tetmesh that respected node 9.

Cubit 13.2 User Documentation

532

volume 1 scheme tetmesh
tetmesh respect node 9
mesh volume 1

The tetmesh respect command can also be used to enforce multiple mesh entities. To accomplish this, the tetmesh
respect command may be issued multiple times. For example, If node12 and a triangle 2 inside volume 3 was to appear in
the volumetric mesh, the following commands could be used:

volume 3 scheme tetmesh
volume 3 tetmesh respect node 12
volume 3 tetmesh respect tri 2
mesh volume 1

Unlike the tetmesh respect command described above, the tetmesh respect file and tetmesh respect location
commands do not require underlying geometry.

Volume <volume_id> Tetmesh Respect File '<filename>'

Volume <volume_id> Tetmesh Respect Location (options)

These two commands create mesh data that only the tetmesher knows about. Thus, to respect a point at (1.0, 0.0, -1.0) in
your model, enter the command

volume 1 tetmesh respect location 1 0 -1

This is much simpler than creating the vertex, meshing it, and then respecting it.

If the model has many points that must be respected, use the file version of the command. First generate a file with all of
the points, edges, and triangles that should be respected. The format of the file is the format used by the facet file. Now,
use the following command to respect all of the information in the file for the given volume.

volume 2 tetmesh respect file 'my_points.facet'

Finally, the following command is used to remove the respected data from an entity.

Volume <volume_id> Tetmesh Respect Clear

The tetmesh respect clear command is the only way to remove respected data from a volume without deleting the volume.
Unfortunately, it removes all respected data from the volume. Therefore, if the model has a lot of data to be respected, it is
best to put it in a file or keep a journal file that can be edited.

Generating a Tetmesh from a Skin of Triangles

Tetmesh Tri <range> [Make {Block|Group} [<id>]]

Tetmesh Tri <range> {Add|Replace} {Block|Group} <id>

The Tetmesh Tri command generates a tetrahedral mesh from the list of triangles entered. The triangles must form a
closed surface. The command fails if they do not. The list of triangles may be a skin, and thus a command such as
'tetmesh tri in block 1' would be acceptable, should block 1 be a previously defined skin.

The first command form has optional arguments. If the make option and its arguments are present, then the specified
object receives the tet mesh. The command fails if an object with the optional identifier exists. If the object identifier is
omitted, the identifier is set to the next available block.

The second command form has two options, add and replace. Each option has a required, associated identifier. If the
identifier is missing or invalid, the command fails. The add option appends the tet mesh to the object. The replace option
removes any existing mesh from the object before adding the tet mesh.

533

Tetprimitive

Applies to: Volumes

Summary: Meshes a 4 "sided" object with hexahedral elements using the standard tetrahedron primitive.

Syntax:

Volume <range> Scheme Tetprimitive [Combine Surface <range>] [Combine Surface <range>]
[Combine Surface <range>] [Combine Surface <range>]

Discussion:

The tetprimitive scheme is used to create a hexahedral mesh in a volume which fits the shape of a tetrahedral primitive.
The Tetprimitive scheme assumes that each of the four surfaces have been meshed with the triprimitive, or similar,
meshing scheme. If more than four surfaces form the tetrahedron geometry, the surfaces forming a logical side can be
combined using the combine option.

Figure 1. Sphere octant hex meshed with scheme Tetprimitive, surfaces meshed using scheme Triprimitive

535

TriDelaunay

Applies to: Surfaces

Summary: Automatically meshes parametric surface geometry with triangle elements.

Syntax:

Surface <range> Scheme TriDelaunay

Discussion:

The scheme TriDelaunay is a parametric meshing algorithm. It can be run in two modes. The default mode (asp)
combines the Delaunay [Watson,81] criterion for connecting nodes into triangles with an advancing-front approach for
inserting nodes into the mesh. This method maximizes the number of regular triangles in the mesh but does not
guarantee the minimum angle quality of the triangles. A guaranteed quality (gq) mode can be used for planar surfaces
(only). This mode refines the initial Delaunay configuration by placing points at the centroids of the worst triangles until
the mesh has an acceptable density. To switch between the two modes, use the following setting command.

[Set] Tridelaunay point placement {gq | guaranteed quality | asp}

TriDelaunay can also utilize a sizing function if one is defined for the surface.

Note: This algorithm is unstable for periodic surfaces which include a singularity point, E.G. spheres with poles, cone tips
and some types of toruses. Use scheme TriMesh, TriAdvance or QTri to mesh non-parametric or periodic parametric
surfaces.

http://cubit.sandia.gov/help-version12.1/appendix/references.htm
http://cubit.sandia.gov/help-version12.1/mesh_generation/meshing_schemes/traditional/trimesh.htm
http://cubit.sandia.gov/help-version12.1/mesh_generation/meshing_schemes/traditional/triadvance.htm
http://cubit.sandia.gov/help-version12.1/mesh_generation/meshing_schemes/conversion/qtri.htm

537

TriAdvance

Applies to: Surfaces

Summary: Automatically meshes surface geometry with triangle elements.

Syntax:

Surface <range> Scheme TriAdvance

Discussion:

The triangle meshing scheme TriAdvance fills an arbitrary surface with triangle elements. It is an advancing front
algorithm which allows holes in the surface and transitions between dissimilar element sizes. It can use a sizing function
like the pave scheme if one is defined for the surface. Future development will add hard lines to this scheme's capabilities.
You specify this scheme for a surface by giving the command:

539

TriMap

Applies to: Surfaces

Summary: Places triangle elements at some vertices, and map meshes the remaining surface.

Syntax:

Surface <range> Scheme Trimap

Related Commands:

Surface <range> Vertex <range> Type {Triangle|Notriangle}

Discussion:

Some surfaces contain bounding curves which meet at a very acute angle. Meshing these surfaces with an all-
quadrilateral mesh will result in a very skewed quad to resolve that angle. In some cases, this is a worse result than
simply placing a triangular element to resolve that angle. This scheme resolves this situation by placing a triangular
element in these tight corners, and filling the remainder of the surface with a mapped mesh.

The algorithm can automatically compute whether a triangular element is necessary, along with where to place that
element. To override the choice of where triangular elements are used, the following command can be issued:

Surface <range> Vertex <range> Type {Triangle|Notriangle}

541

TriMesh

Applies to: Surfaces

Summary: Automatically meshes surface geometry with triangle elements using all available triangle meshing schemes.

Syntax:

Surface <range> Scheme TriMesh

Discussion:

The scheme TriMesh automatically switches between TriDelaunay, TriAdvance, and the QTri schemes. First it tries the
TriDelaunay scheme if the surface is parametric and non-periodic. If that fails, it tries the TriAdvance scheme; and if that
fails it tries the QTri scheme. The QTri scheme first paves the surface and then cuts the quadrilateral elements in half to
form triangles. Figure 1 shows a surface meshed with the TriAdvance scheme, and Figure 2 shows the same surface
meshed using the Qtri method. The TriMesh scheme is the preferred triangle meshing scheme unless there is an
overriding reason to select one of the others. You specify this scheme for a surface by giving the command:

Surface <range> Scheme TriMesh

Figure 1. Triangle mesh generated with scheme TriAdvance

Cubit 13.2 User Documentation

542

Figure 2. Triangle mesh generated with QTri scheme

543

TriPave

Applies to: Surface

Summary: Places triangle elements at some vertices, and paves the remaining surface.

Syntax:

Surface <range> Scheme Tripave

Related Commands:

Surface <range> Vertex <range> Type {triangle|notriangle}

Discussion:

Similar to the trimap algorithm, but uses paving instead of mapping to fill the remainder of the surface with quadrilaterals.

The algorithm can automatically compute whether a triangular element is necessary, along with where to place that
element. To override the choice of where triangular elements are used, the following command can be issued:

Surface <range> Vertex <range> Type {triangle|notriangle}

545

TriPrimitive

Applies to: Surfaces

Summary: Produces a triangle-primitive mesh for a surface with three logical sides

Syntax:

Surface <range> Scheme Triprimitive [SMOOTH | nosmoothing]

Discussion:

The triprimitive scheme indicates that the region should be meshed as a triangle. A surface may use the triprimitive
scheme if three "natural", or obvious, corners of the surface can be identified. For instance, the surface of a sphere octant
(shown in the figure below) is handled nicely by the triprimitive scheme. The algorithm requires that there be at least 6
intervals (2 per side) specified on the curves representing the perimeter of the surface and that the sum of the intervals on
any two of the triangle's sides be at least two greater than the number of intervals on the remaining side. The following
figure illustrates a triprimitive mesh on a 3D surface.

By default, the triprimitive algorithm will smooth the mesh with an iterative smoothing scheme. This smoothing can be
disabled by using the "nosmoothing" option with this command. The quality of the mesh will often be significantly
degraded by disabling smoothing, but in certain cases the unsmoothed mesh may be preferred.

Figure 1. Surfaces meshed with scheme Triprimitive

547

Radialmesh

Summary: Creates a free cylindrical mesh with precise node locations based on input radii, angles, and offsets, then
creates mesh-based geometry to fit the mesh.

Syntax:

Create Radialmesh \
 NumZ <val> [Span <val>] \
 Zblock 1 [<offset val>] \
 {Interval|Bias|Fraction|First Size} <val> \
 [{Interval|Bias|Fraction|Last Size} <val>] \
 Zblock 2 [<offset val>] \
 {Interval|Bias|Fraction|First Size} <val> \
 [{Interval|Bias|Fraction|Last Size} <val>] \
 ... NumZ \

 NumR <val> {Trisection|Initial Radius<val>} \
 Rblock 1 <offset radius val> \
 {Interval|Bias|Fraction|First Size} <val> \
 [{Interval|Bias|Fraction|Last Size} <val>] \
 Rblock 2 <offset radius val> \
 {Interval|Bias|Fraction|First Size} <val> \
 [{Interval|Bias|Fraction|Last Size} <val>] \
 ... NumR \

 NumA <val> [Full360] [Span <val>] \
 Ablock 1 [<offset angle val>] \
 {Interval|Bias|Fraction|First Angle} <val> \
 [{Interval|Bias|Fraction|Last Angle} <val>] \
 Ablock 2 [<offset angle val>] \
 {Interval|Bias|Fraction|First Angle} <val> \
 [{Interval|Bias|Fraction|Last Angle} <val>] \
 ... NumA

Discussion:

The purpose of the radialmesh command is to create a cylindrical mesh with precise node locations. Unlike all other
meshing commands which place nodes using smoothing algorithms to optimize element quality, node locations for the
radialmesh command are calculated based on the input radii, angles, and offsets. In addition, the radialmesh command
does not mesh existing geometry. Rather, it creates a mesh based on the input parameters, after which a mesh-based
geometry is created to fit the free mesh.

The radialmesh command requires input for the 3 coordinate directions (Z, radial, angular). The number of blocks in each
direction is specified with the numZ, numR, and numA values in the command. Each block forms a new volume in the final
mesh. All bodies in the mesh are merged to form a conformal mesh between blocks.

The Radialmesh command can create meshes which span any angle greater than 0.0 up to 360 degrees. In addition,
meshes can model either a tri-section (see Figure 1), or a non-trisection mesh (see Figure 2).

Cubit 13.2 User Documentation

548

Figure 1. Tri-section Radialmesh

Figure 2. Non-tri-section Radialmesh

The command to generate the mesh in Figure 1 is:

create radialmesh \
 numZ 1 zblock 1 1 interval 5 \
 numR 3 trisection rblock 1 2 interval 5 \
 rblock 2 3 interval 5 \
 rblock 3 4 interval 5 \
 numA 1 span 90 ablock 1 interval 10

The command to generate the mesh in Figure 2 is:

create radialmesh \
 numZ 1 zblock 1 1 interval 5 \
 numR 1 initial radius 3 rblock 1 4 interval 5 \
 numA 1 span 90 ablock 1 interval 10

A mesh can span an entire 360 degrees by using the “full360” keyword. For example, the mesh in Figure 3 was generated
with the following command:

Radialmesh

549

create radialmesh numZ 1 zblock 1 1 interval 5 \
 numR 3 trisection rblock 1 1 interval 5 \
 rblock 2 2 interval 5 \
 rblock 3 3 interval 5 \
 numA 5 full360 span ablock 1 interval 5 \
 ablock 2 interval 5 \
 ablock 3 interval 5 \
 ablock 4 interval 5

Figure 4. Radialmesh using full360 option

After the mesh is generated, the radialmesh command fits the mesh with mesh based geometry. The surfaces created to
fit the mesh are given special names according to their location on the geometry. To see the names of the surfaces, issue
the command label surface name after creating a radialmesh. Also, if you create a tri-section mesh, the edges on the
center axis are given names. To see these names issue the command label curve name after creating a trisection
Radialmesh.

The user can control the number of intervals and the spacing of these intervals using the optional parameters in each
rblock, zblock and ablock. There are 11 combinations that these can be combined as listed below:

 Interval Only- Example: "interval 5." The block will be meshed with 5 equally spaced intervals.

 First Size Only- Example: “first size 2.5.” The block will be meshed with intervals of approximately 2.5 in length.
The total number of intervals is internally calculated and depends on the overall block length.

 Fraction Only- Example: “fraction 0.3333.” The block will be meshed with intervals approximately
0.3333*overall block length.

 Interval and Bias- Example: “interval 5 bias 1.5.” There will be 5 intervals on the block, which each interval
being 1.5 times the previous one. The length of each interval is calculated internally.

 Interval and Fraction- Example: “interval 5 fraction 0.25.” There will be 5 intervals on the block, the first being
.25 of the length of the block with the remaining decreasing in size.

 Interval and First Size- Example: “interval 5 first size 0.2.” There will be 5 intervals on the block, the first being
0.2 in length. The remaining intervals will increase or decrease to fill the blocks length.

Cubit 13.2 User Documentation

550

 First Size and Last Size- Example: “first size 0.2 last size 0.4.” The first interval will be 0.2 in length. The last
interval will be 0.4 in length. The total number of intervals is internally calculated to allow for transition between
the 2 specified sizes.

 First Size and Bias- Example “first size 0.2 bias 0.85.” The first interval will be 0.2 in length and the remaining
intervals will scale by a factor of 0.85 from one to the next until the block is filled. The total number of intervals is
internally calculated and depends on the overall block length.

 Fraction and Bias- Example “fraction 0.25 bias 1.25.” The first interval will be 0.25 of the overall block length
and the remaining intervals will scale by a factor of 1.25 from one to the next until the block is filled. The total
number of intervals is internally calculated and depends on the overall block length.

 Interval and Last Size- Example: “last size 1.5 interval 5.” The last interval will be 1.5 in length. The remaining
intervals will scale up or down to fit 5 intervals in the block.

 Last Size and Bias- Example: “last size 2.0 bias 1.1.” The last interval will be 2.0 in length. The remaining
intervals will scale by 1.1 until the block is filled. The total number of intervals is internally calculated and
depends on the overall block length.

Figure 5 shows an example of a bias spaced mesh with the following command:

create radialmesh numZ 2 zblock 1 1 first size 0.2 \
 zblock 2 10 first size 0.2 last size 1.0 \
 numR 3 trisection rblock 1 1 interval 5 \
 rblock 2 2 first size .25 \
 rblock 3 5 first size .25 bias 2.0 \
 numA 1 span 90 ablock 1 interval 5

Radialmesh

551

Figure 5. Radialmesh created with biased spacing

553

HTet

Applies to: Volumes

Summary: Converts an existing hex mesh into a conforming tetrahedral mesh.

Syntax:

HTet Volume <range> {UNSTRUCTURED | structured}

Discussion:

Unlike other meshing schemes in this section, The HTet command requires an existing hexahedral mesh on which to
operate. Rather than setting a meshing scheme for use with the mesh command, the HTet command works after an initial
hex mesh has been generated.

Two methods for decomposing a hex mesh into tetrahedra are available. Set the method to be used with the optional
arguments unstructured and structured. The unstructured method is the default. Figure 1 shows the difference between
the two methods:

Figure 1. Left: Unstructured method creates 6 tets per hex. Right: Structured method creates 28 tets per hex

Unstructured

This method creates 6 tetrahedra for every hexahedra. No new nodes will be generated. The orientation of the 6
hexahedra will be based upon the element node numbering, as a result orientations may change if node numbering
changes. This method is referred to as unstructured because the number of tetrahedra adjacent each node will be
relatively arbitrary in the final mesh. Tetrahedral element quality is generally sufficient for most applications, however the
user may want to verify quality before performing analysis.

Cubit 13.2 User Documentation

554

Structured

With this approach, 28 tetrahedra are generated for every hexahedra in the mesh. This method adds a node to each face
of the hex and one to the interior. Although this method generates significantly more elements, the orientation and quality
of the resulting tetrahedra are more consistent. Each previously existing interior node in the mesh will have the same
number of adjacent tetrahedra.

555

QTri

Applies to: Surfaces

Summary: Meshes surfaces using a quadrilateral scheme, then converts the quadrilateral elements into triangles.

Syntax:

Surface <range> Scheme Qtri [Base Scheme quad_scheme>]

QTri Surface <range>

Set QTri Split [2|4]

Set QTri Test {Angle|Diagonal}

Discussion:

QTri is used to mesh surfaces with triangular elements. The surface is, first, meshed with the quadrilateral scheme, and,
then, the generated quads are split along a diagonal to produce triangles. The first command listed above sets the
meshing scheme on a surface to QTri. The second form sets the scheme and generates the mesh in a single step.

In the first command, the user has the option of specifying the underlying quadrilateral meshing scheme using the base
scheme <quad_scheme> option. If no base scheme is specified, CUBIT will automatically select a scheme. For non-
periodic surfaces, the base scheme will be set to scheme pave. For periodic surfaces, the base scheme will be set to
scheme map.

Generally, the second command, Qtri Surface <range>, is used on surfaces that have already been meshed with
quadrilaterals. If, however, this command is used on a surface that has not been meshed, a base scheme will
automatically be selected using CUBIT’s auto-scheme capabilities. The user can over-ride this selection by specifying a
quadrilateral meshing scheme prior to using the qtri command (using the Surface <range> Scheme <quad_scheme>
command).

In addition to the default 2 tris per quad, the set qtri split command may alter the QTri scheme so that it will split the quad
into 4 triangles per quad. Where the 4 option is used, an additional mesh node is placed at the centroid of each quad.

There are two methods that may be used to calculate the best diagonal to use for splitting the quadrilateral elements:
angle or diagonal. The angle measurement uses the largest angle, while the diagonal option uses the shortest diagonal.
The largest angle measurement will be more accurate but takes more time.

Also, the QTri scheme is used in the TriMesh command as a backup to the TriAdvance triangle meshing scheme.

Figure 1. Surface meshed with scheme QTri

Cubit 13.2 User Documentation

556

557

THex

Applies to: Volumes

Summary: Converts a tetrahedral mesh into a hexahedral mesh.

Syntax:

THex Volume <range>

Discussion:

The THex command splits each tetrahedral element in a volume into four hexahedral elements, as shown in Figure 1.
This is done by splitting each edge and face at its midpoint, and then forming connections to the center of the tet.

When THexing merged volumes, all of the volumes must be THexed at the same time, in a single command. Otherwise,
meshes on shared surfaces will be invalid. An example of the THex algorithm is shown in Figure 2.

Figure 1. Conversion of a tetrahedron to four hexahedra, as performed by the THex algorithm.

.

Cubit 13.2 User Documentation

558

Figure 2. A cylinder before and after the THex algorithm is applied.

559

TQuad

Applies to: Surfaces

Summary: Converts a triangular surface mesh into a quadrilateral mesh.

Syntax:

TQuad Surface <range>

Discussion:

The TQuad command splits each triangular surface element in four quadrilateral elements, as shown in Figure 1. This is
done by splitting each edge at its midpoint, and then forming connections to the center of the triangle. The result is the
same as using the THex algorithm, but only applies to surfaces. In general it is better to use a mapped or paved mesh to
generate quadrilateral surface meshes. However, the TQuad scheme may be useful for converting facet-based triangular
meshes to quadrilateral meshes when remeshing is not possible.

Figure 1. A triangle split into 3 quads using the TQuad scheme

561

Copying a Mesh

Applies to: Curves, Surfaces, Volumes

Summary: Copies the mesh from one entity to another

Syntax:

Curve <range> Scheme Copy source Curve <range> [Source Percent [<percentage> | auto]] [Source
[combine|SEPARATE]] [Target [combine|SEPARATE]] [Source Vertex <id_range>] [Target Vertex
<id_range>]]

Surface <range> Scheme Copy [Source Surface] <id> [[Source Curve <id> Target Curve <id>]
[Source Vertex <id> Target Vertex <id>] [Nosmoothing]

Volume <range> Scheme Copy [Source Volume] <id> [[Source Surface <id> Target Surface <id>]
[Source Curve <id> Target Curve <id>] [Source Vertex <id> Target Vertex <id>]][Nosmoothing]

Copy Mesh Curve <curve_id_range> Onto Curve <curve_id_range> [Source Node <starting node id>
<ending node id>] [Source Percent [<percentage>|auto]] [Source [combine|SEPARATE]] [Target
[combine|SEPARATE]] [Source Vertex <id_range>] [Target Vertex <id_range>]

Copy Mesh Surface <surface_id> Onto Surface <surface_id> [Source Face <id_range>] [Source
Node <id> Target Node <id>] [Source Edge <id> Target Edge <id>] [Source Vertex <id> Target
Vertex <id>] [Source Curve <id> Target Curve <id>] [Nosmoothing]

Copy Mesh Volume <volume_id> Onto Volume <volume_id> [Source Vertex <vertex_id> Target
Vertex <vertex_id> [Source Curve <curve_id> Target Curve <curve_id>] [Nosmoothing]

Related Commands:

Set Morph Smooth {on | off}

Discussion:

If the user desires to copy the mesh from a surface, volume, curve, or set of curves that has already been meshed, the
copy mesh scheme can be used. Note that this scheme can be set before the source entity has been meshed; the source
entity will be meshed automatically, if necessary, before the mesh is copied to the target entity. The user has the option of
providing orientation data to specify how to orient the source mesh on the target entity. For example, when copying a
curve mesh, the user can specify which vertex on the source (the source vertex) gets copied to which vertex on the target
(the target vertex). If you need to reference mesh entities for the copy, use the Copy Mesh commands. If no orientation
data is specified, or if the data is insufficient to completely determine the orientation on the target entity, the copy
algorithm will attempt to determine the remaining orientation data automatically. If conflicting, or inappropriate, orientation
data is given, the algorithm attempts to discard enough information to arrive at a proper mesh orientation.

Curve mesh copying has certain options that allow the copying of just a section of the source curves' mesh. These options
are accessed through the extra keyword options. The percent option allows the user to specify that a certain percentage
of the source mesh be copied--in this context the auto keyword means that the percentage will be calculated based on the
ratio of lengths of the source and target curves. The combine and separate keywords relate to how the command line
options are interpreted. If the user wishes to specify a group of target curves that will each receive an identical copy of a
source mesh, then the target separate option should be used (this is the default). If, however, the user wishes the source
mesh to be spread out along the range of target curves, then the target combine option should be used. The source
curves are treated in a similar fashion.

Volume mesh copying depends on the surface copying scheme. Because of this, the target volume must not have any of
its surfaces meshed already.

Because of how the copying algorithm works, the target mesh might not be an exact copy of the source mesh. This
happens because of the effects of smoothing. If an exact copy is required, there are two possible solutions. The first
option is useful when the source and target surfaces or volumes are exact matches. If this criterion is met, the user may
specify the Nosmoothing option. That will disable any smoothing of the mesh on the target surface and thereby providing
an exact copy of the mesh. The second option is useful if the source and target surfaces are not identical. In this case the
user may set the morph smoothing flag on, which will activate a special smoother that will match up the meshes as closely
as possible.

Cubit 13.2 User Documentation

562

563

Mirroring a Mesh

Applies to: Surfaces

Summary: Mirrors the mesh from one surface to another

Syntax:

Surface <range> Scheme Mirror [Source Surface <id> [Source Vertex <id> Target Vertex <id>]]
[Nosmoothing]

Mirror Mesh Surface <surface_id> Onto Surface <surface_id> [Source Vertex <id> Target Vertex
<id> Source Curve <id> Target Curve <id> Source Node <id> Target Node <id>] [Nosmoothing]

Discussion:

The mirror scheme is very similar to the copy scheme. In order to understand what is changed, a discussion of the copy
command is in order. Depending on what the user enters for the copy scheme, the resulting mesh might be oriented one
of two ways. For example, if the user entered:

Surface 1 scheme copy source surface 2 source vertex 5 target vertex 1

then the algorithm would match vertex 1 with vertex 5, but then would have to make a guess about how to match the
curves. Lacking other pertinent data, the match will be a direct match, as is shown in the following figure:

Figure 1. Surface 1 copied onto surface 2

Figure 2. Surface 1 mirrored onto surface 2

This default matching can be changed by specifying more information for matching, or the user can specify scheme
mirror. The mirror scheme sets up the copying information in such a way as to reverse the default orientation of the target
mesh, as is shown in the above figure (right).

Cubit 13.2 User Documentation

564

There are times when the resulting mesh may not match the original mesh exactly due to smoothing. Using the
nosmoothing option will ensure that the resulting mesh matches the original mesh exactly.

The alternate form of the command copies the mesh immediately instead of setting a scheme first. This form of the
command can also use curves and mesh entities as references.

565

Automatic Scheme Selection

 Default Scheme Selection

 Automatic Scheme Selection General Notes

 Surface Auto Scheme Selection

 Volume Auto Scheme Selection

For volume and surface geometries the user may allow CUBIT to automatically select the meshing scheme. Automatic
scheme selection is based on several constraints, some of which are controllable by the user. The algorithms to select
meshing schemes will use topological and geometric data to select the best quad or hex meshing tool. Auto scheme
selection will not select tet or tri meshing algorithms. The command to invoke automatic scheme selection is:

{geom_list} Scheme Auto

Specifically for surface meshing, interval specifications will affect the scheme designation. For this reason it is
recommended that the user specify intervals before calling automatic scheme selection. If the user later chooses to
change the interval assignment, it may be necessary to call scheme selection again. For example, if the user assigns a
square surface to have 4 intervals along each curve, scheme selection will choose the surface mapping algorithm.
However if the user designates opposite curves to have different intervals, scheme selection will choose paving, since this
surface and its assigned intervals will not satisfy the mapping algorithm's interval constraints. In cases where a general
interval size for a surface or volume is specified and then changed, scheme selection will not change. For example, if the
user specified an interval size of 1.0 a square 10X10 surface, scheme selection will choose mapping. If the user changes
the interval size to 2.0, mapping will still be chosen as the meshing scheme from scheme selection. If a mesh density is
not specified for a surface, a size based on the smallest curve on the surface will be selected automatically.

Default Scheme Selection

If the user does not set a scheme for a particular entity and chooses to mesh the entity, CUBIT will automatically run the
auto scheme selection algorithm and attempt to set a scheme. In cases where the auto scheme selection fails to choose a
scheme, the meshing operation will fail. In this case explicit specification of the meshing scheme and/or further geometry
decomposition may be necessary.

The default scheme selection in CUBIT, unless otherwise set, will attempt to set a quadrilateral or hexahedral meshing
scheme on the entity. If tet or tri meshing will always be the desired element shape, the following command can be used:

Set Default Element [Tet|Tri|HEX|QUAD|None]

Setting the default element to tet or tri will bypass the auto scheme selection and always use either the triadvance or
tetmesh schemes if the scheme has not otherwise been set by the user. The default settings of quad or hex will use the
automatic scheme selection.

Previous functionality of CUBIT used a default scheme of map and interval of 1 for all surface and volume entities. For
backwards compatibility and if this behavior is still desired, the none option may be used on the set default element
command.

Auto Scheme Selection General Notes

In general, automatic scheme selection reduces the amount of user input. If the user knows the model consists of 2.5D
meshable volumes, three commands to generate a mesh after importing or creating the model are needed. They are:

volume all size <value>

volume all scheme auto

mesh volume all

The model shown in the following figure was meshed using these three commands (part of the model is not shown to
reveal the internal structure of the model).

Cubit 13.2 User Documentation

566

Figure 1. Non-trivial model meshed using automatic scheme selection

Scheme Firmness

Meshing schemes may be selected through three different approaches. They are: default settings, automatic scheme
selection, and user specification. These methods also affect the scheme firmness settings for surfaces and volumes.
Scheme firmness is completely analogous to interval firmness.

Scheme firmness can be set explicitly by the user using the command

{geom_list} Scheme {Default | Soft | Hard}

Scheme firmness settings can only be applied to surfaces and volumes.

This may be useful if the user is working on several different areas in the model. Once she/he is satisfied with an area's
scheme selection and doesn't want it to change, the firmness command can be given to hard set the schemes in that
area. Or, if some surfaces were hard set by the user, and the user now wants to set them through automatic scheme
selection then she/he may change the surface's scheme firmness to soft or default.

Surface Auto Scheme Selection

Surface auto scheme selection (White, 99) will choose between Pave, Submap, Triprimitive, and Map meshing schemes,
and will always result in selecting a meshing scheme due to the existence of the paving algorithm, a general surface
meshing tool (assuming the surface passes the even interval constraint).

Automatic Scheme Selection

567

Surface auto scheme selection uses an angle metric to determine the vertex type to assign to each vertex on a surface;
these vertex types are then analyzed to determine whether the surface can be mapped or submapped. Often, a surface's
meshing scheme will be selected as Pave or Triprimitive when the user would prefer the surface to be mapped or
submapped. The user can overcome this by several methods. First, the user can manually set the surface scheme for the
"fuzzy" surface. Second, the user can manually set the "vertex types" for the surface. Third, the user can increase the
angle tolerance for determining "fuzziness." The command to change scheme selection's angle tolerances is:

[Set] Scheme Auto Fuzzy [Tolerance] {value} (value in degrees)

The acceptable range of values is between 0 and 360 degrees. If the user enters 360 degrees as the fuzzy tolerance, no
fuzzy tolerance checks will be calculated, and in general mapping and submapping will be chosen more often. If the user
enters 0 degrees, only surfaces that are "blocky" will be selected to be mapped or submapped, and in general paving will
be chosen more often.

Volume Auto Scheme Selection

When automatic scheme selection is called for a volume, surface scheme selection is invoked on the surfaces of the
given volume. Mesh density selections should also be specified before automatic volume scheme selection is invoked due
to the relationship of surface and volume scheme assignment.

Volume scheme selection chooses between Map, Submap and Sweep meshing schemes. Other schemes can be
assigned manually, either before or after the automatic scheme selection.

Volume scheme selection is limited to selecting schemes for 2.5D geometries, with additional tool limitations (e.g. Sweep
can currently only sweep from several sources to a single target, not multiple targets); this is due to the lack of a
completely automatic 3D hexahedral meshing algorithm. If volume scheme selection is unable to select a meshing
scheme, the mesh scheme will remain as the default and a warning will be reported to the user.

Volume scheme selection can fail to select a meshing scheme for several reasons. First, the volume may not be
mappable and not 2.5D; in this case, further decomposition of the model may be necessary. Second, volume scheme
selection may fail due to improper surface scheme selection. Volume schemes such as Map, Submap, and Sweep require
certain surface meshing schemes, as mentioned previously.

569

Parallel Meshing

The set parallel meshing works with the export parallel command to generate a boundary mesh suitable for sweeping with
the pCAMAL application. Currently only the Cubit sweep scheme is affected, but the mapping and submapping schemes
may be in the future. The command syntax is:

Set Parallel Meshing {on|OFF}

For now, sweeping a volume in the parallel meshing mode will only generate the exterior shell of the volume, i.e, source,
linking, and target surfaces. This shell is written to an ExodusII file with the export parallel command.

To determine if you are currently in parallel meshing mode you may list the current status using the List Parallel
command.

List Parallel Meshing

571

Metrics for Edge Elements

The metrics used for edge elements in CUBIT are summarized in the following table:

Function Name Dimension Full Range Acceptable Range

Length L^0 0 to inf None

Quality Metric Definitions:

Length: Distance between beginning and ending nodes of an edge

Comments on Algebraic Quality Measures

1. The quality command for edge length only accepts edge elements as input; it does not accept geometry as
input.

2. The length metric is currently only available for edge elements. Edge elements are created by default when
curves and surfaces are meshed. Edge elements are not created for interior volume elements.

573

Metrics for Triangular Elements

The metrics used for triangular elements in CUBIT are summarized in the following table:

Function Name Dimension Full Range Acceptable Range Reference

Element Area L^2 0 to inf None 1

Maximum Angle degrees 60 to 180 60 to 90 1

Minimum Angle degrees 0 to 60 30 to 60 1

Condition No L^0 1 to inf 1 to 1.3 2

Scaled Jacobian L^0 -1 to 1 0.2 to 1 2

Relative Size L^0 0 to 1 0.25 to 1 3

Shape L^0 0 to 1 0.25 to 1 3

Shape and Size L^0 0 to 1 0.25 to 1 3

Distortion L^2 -1 to 1 0.6 to 1 4

Approximate Triangular Quality Definitions:

Element Area: (1/2) * Jacobian at corner node

Maximum Angle: Maximum included angle in triangle

Minimum Angle: Minimum included angle in triangle

Condition No. Condition number of the Jacobian matrix

Scaled Jacobian: Minimum Jacobian divided by the lengths of 2 edge vectors

Relative Size: Min(J, 1/J), where J is determinant of weighted Jacobian matrix

Shape: 2/Condition number of weighted Jacobian matrix

Shape & Size: Product of Shape and Relative Size

Distortion: {min(|J|)/actual area}*parent area, parent area = 1/2 for triangular element

Cubit 13.2 User Documentation

574

Comments on Algebraic Quality Measures

Relative Size, Shape, and Shape & Size are algebraic metrics, which have well behaved properties. Cubit encourages the
use of these metrics over other metrics. These metrics are referenced to an ideal element which, in the case of triangular
elements, is an equilateral triangle. Thus deviations from an equilateral triangle are measured in various ways by the
algebraic metrics.
Relative size measures the size of the element vs. the size of reference element. If the element is twice or one-half the
size of the reference element, the relative size is one-half. By default, the size of the reference element is the average
size of all the elements that the quality command is currently evaluating.

The shape and size metric measures how both the shape and relative size of the element deviate from that of the
reference element.

References for Triangular Quality Measures

1. Traditional.
2. Knupp, 2000.
3. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured Initial Meshes, submitted for publication.
4. SDRC/IDEAS Simulation: Finite Element Modeling--User's Guide

575

Metrics for Quadrilateral Elements

The metrics used for quadrilateral elements in CUBIT are summarized in the following table:

Function Name Dimension Full Range Acceptable Range Reference

Aspect Ratio L^0 1 to inf 1 to 4 1

Skew L^0 0 to 1 0 to 0.5 1

Taper L^0 0 to +inf 0 to 0.7 1

Warpage L^0 0 to 1 0.9 to 1.0 NEW

Element Area L^2 -inf to inf None 1

Stretch L^0 0 to 1 0.25 to 1 2

Minimum Angle degrees 0 to 90 45 to 90 3

Maximum Angle degrees 90 to 360 90 to 135 3

Condition No. L^0 1 to inf 1 to 4 4

Jacobian L^2 -inf to inf None 4

Scaled Jacobian L^0 -1 to +1 0.5 to 1 4

Shear L^0 0 to 1 0.3 to 1 5

Shape L^0 0 to 1 0.3 to 1 5

Relative Size L^0 0 to 1 0.3 to 1 5

Shear & Size L^0 0 to 1 0.2 to 1 5

Shape & Size L^0 0 to 1 0.2 to 1 5

Distortion L^2 -1 to 1 0.6 to 1 6

Quadrilateral Quality Definitions

Aspect Ratio: Maximum edge length ratios at quad center

Skew: Maximum |cos A| where A is the angle between edges at quad center

Cubit 13.2 User Documentation

576

Taper: Maximum ratio of lengths derived from opposite edges

Warpage: Cosine of Minimum Dihedral Angle formed by Planes Intersecting in Diagonals

Element Area: Jacobian at quad center

Stretch: Sqrt(2) * minimum edge length / maximum diagonal length

Minimum Angle: Smallest included quad angle (degrees).

Maximum Angle: Largest included quad angle (degrees).

Condition No. Maximum condition number of the Jacobian matrix at 4 corners

Jacobian: Minimum pointwise volume of local map at 4 corners & center of quad

Scaled Jacobian: Minimum Jacobian divided by the lengths of the 2 edge vectors

Shear: 2/Condition number of Jacobian Skew matrix

Shape: 2/Condition number of weighted Jacobian matrix

Relative Size: Min(J, 1/J), where J is determinant of weighted Jacobian matrix

Shear and Size: Product of Shear and Relative Size

Shape and Size: Product of Shape and Relative Size

Distortion: {min(|J|)/actual area}*parent area, parent area = 4 for quad

Comments on Algebraic Quality Measures

Shape, Relative Size, Shape & Size, and Shear are algebraic quality metrics that apply to quadrilateral elements. Cubit
encourages the use of these metrics since they have certain nice properties (see reference 5 below). The metrics are
referenced to a square-shaped quadrilateral element, thus deviations from a square are measured in various ways.

Shape measures how far skew and aspect ratio in the element deviates from the reference element.

Relative size measures the size of the element vs. the size of reference element. If the element is twice or one-half the
size of the reference element, the relative size is one-half. The reference element for the Relative Size metric is a square
whose area is determined by the average area of all the quadrilaterals on the surface mesh under assessment

Shape and size metric measures how both the shape and relative size of the element deviate from that of the reference
element.

The SHEAR metric is based on the condition number of the skew matrix. SHEAR is really just an algebraic skew metric
but, since the word skew is already used in the list of quad quality metrics, Cubit has chosen to use the word 'shear.'

Shear = 1 if and only if quadrilateral is a rectangle.

The Robinson 'skew' metric equals the ideal (zero) if the quad is a rectangle. It also attains the ideal if the quad is a
trapezoid, a kite, or even triangular!

References for Quadrilateral Quality Measures

1. (Robinson, 87)
2. FIMESH code.
3. Unknown.
4. (Knupp, 00)
5. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured Initial Meshes, submitted for publication.
6. 6. SDRC/IDEAS Simulation: Finite Element Modeling--User's Guide

Metrics for Quadrilateral Elements

577

Details on Robinson Metrics for Quadrilaterals

The quadrilateral element quality metrics that are calculated are aspect ratio, skew, taper, element area, and stretch. The
calculations are based on metrics described in (Robinson, 87). An illustration of the shape parameters is shown in Figure
1, below. The stretch metric is calculated by dividing the length of the shortest element edge divided by the length of the
longest element diagonal.

Figure 1. Illustration of Quadrilateral Shape Parameters (Quality Metrics)

579

Metrics for Tetrahedral Elements

The metrics used for tetrahedral elements in CUBIT are summarized in the following table:

Function Name Dimension Full Range Acceptable Range Reference

Aspect Ratio Beta L^0 1 to inf 1 to 3 1

Aspect Ratio Gamma L^0 1 to inf 1 to 3 1

Element Volume L^3 -inf to inf None 1

Condition No L^0 1 to inf 1 to 3 2

Jacobian L^3 -inf to inf None 2

Scaled Jacobian L^0 -1 to 1 0.2 to 1 2

Shape L^0 0 to 1 0.2 to 1 3

Relative Size L^0 0 to 1 0.2 to 1 3

Shape and Size L^0 0 to 1 0.2 to 1 3

Distortion L^0 -1 to 1 0.6 to 1 4

Tetrahedral Quality Definitions

Aspect Ratio Beta: CR / (3.0 * IR) where CR = circumsphere radius, IR = inscribed sphere radius

Aspect Ratio Gamma: Srms**3 / (8.479670*V) where Srms = sqrt(Sum(Si**2)/6), Si = edge length

Element Volume: (1/6) * Jacobian at corner node

Condition No.: Condition number of the Jacobian matrix at any corner

Jacobian: Minimum pointwise volume at any corner

Scaled Jacobian: Minimum Jacobian divided by the lengths of 3 edge vectors

Shape: 3/Mean Ratio of weighted Jacobian Matrix

Relative Size: Min(J, 1/J), where J is the determinant of the weighted Jacobian matrix

Shape & Size: Product of Shape and Relative Size Metrics

Distortion: {min(|J|)/actual volume}*parent volume, parent volume = 1/6 for tet

Cubit 13.2 User Documentation

580

For tetra10 elements, the distortion metric can be used in conjunction with the shape metric to determine whether the mid-
edge nodes have caused negative Jacobians in the element. The shape metric only considers the linear (parent) element.
If a tetra10 has a non-positive shape value then the element has areas of negative Jacobians. However, for elements with
a positive shape metric value, if the distortion value is non-positive then the element contains negative Jacobians due to
the mid-side node positions.

Note that, for tetrahedral elements, there are several definitions of the term "aspect ratio" used in literature and in software
packages. Please be aware that the various definitions will not necessarily give the same or even comparable results.

References for Tetrahedral Quality Measures

1. (Parthasarathy, 93)
2. (Knupp, 00)
3. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured Initial Meshes, to appear in Finite Elements for

Design
and Analysis.

4. SDRC/IDEAS Simulation: Finite Element Modeling - User's Guide

581

Metrics for Hexahedral Elements

The metrics used for hexahedral elements in CUBIT are summarized in the following table:

Function Name Dimension Full Range Acceptable Range Reference

Aspect Ratio L^0 1 to inf 1 to 4 1

Skew L^0 0 to 1 0 to 0.5 1

Taper L^0 0 to +inf 0 to 0.4 1

Element Volume L^3 -inf to inf None 1

Stretch L^0 0 to 1 0.25 to 1 2

Diagonal Ratio L^0 0 to 1 0.65 to 1 3

Dimension L^1 0 to inf None 1

Condition No. L^0 1 to inf 1 to 8 5

Jacobian L^3 -inf to inf None 5

Scaled Jacobian L^0 -1 to +1 0.5 to 1 5

Shear L^0 0 to 1 0.3 to 1 5

Shape L^0 0 to 1 0.3 to 1 5

Relative Size L^0 0 to 1 0.5 to 1 5

Shear & Size L^0 0 to 1 0.2 to 1 5

Shape & Size L^0 0 to 1 0.2 to 1 5

Distortion L^0 0 to 1 0.6 to 1 6

Hexahedral Quality Definitions

Aspect Ratio: Maximum edge length ratios at hex center.

Skew: Maximum |cos A| where A is the angle between edges at hex center.

Taper: Maximum ratio of lengths derived from opposite edges.

Cubit 13.2 User Documentation

582

Element Volume: Jacobian at hex center.

Stretch: Sqrt(3) * minimum edge length / maximum diagonal length.

Diagonal Ratio: Minimum diagonal length / maximum diagonal length.

Dimension: Pronto-specific characteristic length for stable time step calculation. Char_length = Volume / 2 grad Volume.

Condition No. Maximum condition number of the Jacobian matrix at 8 corners.

Jacobian: Minimum pointwise volume of local map at 8 corners & center of hex.

Scaled Jacobian: Minimum Jacobian divided by the lengths of the 3 edge vectors.

Shear: 3/Mean Ratio of Jacobian Skew Matrix

Shape: 3/Mean Ratio of weighted Jacobian Matrix

Relative Size: Min(J, 1/J), where J is the determinant of weighted Jacobian matrix

Shear & Size: Product of Shear and Size Metrics

Shape & Size: Product of Shape and Size Metrics

Distortion: {min(|J|)/actual volume}*parent volume, parent volume = 8 for hex

References for Hexahedral Quality Measures

1. (Taylor, 89)
2. FIMESH code
3. Unknown
4. (Knupp, 00)
5. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured

Initial Meshes, to appear in Finite Elements for Design
and Analysis.

6. SDRC/IDEAS Simulation: Finite Element Modeling - User's Guide

583

Mesh Quality Command Syntax

The base command to view the quality of a mesh is the following:

Quality {geom_and_mesh_list} [metric name] [quality options] [filter options]

Where the list contains surfaces and volumes and groups that have been meshed with faces, triangles, hexes, and
tetrahedra; the list can also specify individual mesh entities or ranges of mesh entities.

If a specific metric name is given, only that metric or metrics are computed for the specified entities. Note that the metric
given must be one which applies to the given entities. To see a list of quality metrics for individual entities see the Mesh
Quality Assessment section and select the desired entity type: hexahedral, tetrahedral, quadrilateral, triangle. or edge

The metric name can also be more general than a specific metric. Four generalized options for metric name can be used:

Allmetrics: All of the metrics corresponding to the element type of the geom_and_mesh_list will be computed and
reported.

Algebraic: All algebraic metrics corresponding to the element type of the geom_and_mesh_list will be computed and
reported (e.g., Shape, Shear, Relative Size).

Robinson: All Robinson metrics corresponding to the element type of the geom_and_mesh_list will be computed and
reported (e.g., Aspect Ratio, Skew, Taper).

Traditional: All the traditional Cubit metrics corresponding to the element type of the geom_and_mesh_list will be
computed and reported (e.g., area, volume, angle, stretch, dimension).

If no metric name is supplied, the default metric is "Shape".

Quality Options

The quality options are:

Scope

[Global | Individual]

If the user specifies individual, one quality summary is generated for each entity specified on the command line. If the
user specifies global, or specifies neither, then one quality summary is generated for each mesh element type.

Draw

[Draw [Histogram] [Mesh] [Monochrome] [Add]]

If the user specifies draw histogram, then histograms are drawn in a separate graphics window. The window contains
one histogram for each quality metric. If the user specifies draw mesh, then the mesh elements are drawn in the default
graphics window. A color-coded scale will appear in the graphics window. The histogram and mesh graphics are color
coded by quality: a small metric value corresponds to red, a large metric value to blue and in-between values according to
the rainbow. You can grab the side of color bar and resize it. The text gets smaller as the color bar width decreases. You
can also grab in the middle of the color bar and move it around. It can be repositioned to the bottom or top and it will
automatically change orientations. See Figure 1.

Cubit 13.2 User Documentation

584

Figure 1. Quality Scale

If monochrome is specified, then the graphics are not color-coded. If add is specified, then the current display is not
cleared before drawing the mesh elements.

List

[List [Detail] [Id] [Verbose Errors]] [Geometry]

If the user specifies List, then the quality data is summarized in text form. List Detail lists the mesh elements by
ascending quality metric. List Id lists the ids of the mesh elements. If Verbose Errors is specified, then details about
unacceptable quality elements are printed out above the summaries. If Geometry is specified, then a list of the geometric
entities that own the elements will be printed.

Filter

There are several options available to filter the output of the quality command, using the following filter options :

[High <value>] [Low <value>]

Discards elements with metric values above or below value; either or both can be used to get elements above or below a
specified value or in a specified range.

[Top <number>] [Bottom <number>]

Mesh Quality Command Syntax

585

Keeps only number elements with the highest or lowest metric values. For example, " Quality hex all aspect ratio top 10
" would request the elements with the 10 highest values of the aspect ratio metric.

587

Mesh Quality Example Output

The typical summary output from the command quality surface 24 is shown in Figure 1. Figure 2 shows the
corresponding histogram. The colored element display resulting from the command quality surface 1 draw `Skew' is
shown Figure 3. A color legend is also printed to the console as shown in Figure 4.

Figure 1. Typical Summary for a Quality Command

Cubit 13.2 User Documentation

588

Figure 2. Histogram output from command "Quality Surface 24 Draw Histogram"

Mesh Quality Example Output

589

Figure 3. Graphical output of quality metric for command "Quality Surface 24 Skew Draw Mesh"

Figure 4. Legend for command "Quality Surface 1 Skew Draw Mesh"

591

Automatic Mesh Quality Assessment

CUBIT performs an automatic calculation of mesh quality which warns users when a particular meshing scheme or other
meshing operation has created a mesh whose quality may be inadequate. These warnings are supplied in case the user
forgets to manually check the mesh quality.

CUBIT automatically calculates the SHEAR quality of hexahedral and quadrilateral elements and the SHAPE quality of
tetrahedral and triangular elements. The SHEAR metric measures element skew and ranges between zero and one with a
value of zero signifying a non-convex element, and a value of one being a perfect, right-angled element. The SHAPE
metric also ranges between zero and one with a value of zero signifying a degenerate or inverted element and a value of
one signifying a perfect, equilateral element. The quality of the mesh is then defined to be the minimum value of the shear
metric for hexahedral and quadrilateral elements and the shape metric for tetrahedral and triangular elements, with the
minimum taken over the elements in the mesh.

If the quality of the mesh is zero, the code reports "ERROR: Negative Jacobian Element Generated" to the command
window. By default, if the quality of the mesh is positive but less than a certain threshold, the code reports "WARNING:
Poorly-Shaped Element Generated" to the command window. Also reported in this case is the ID of the offending element,
the value of its shear (or shape) metric, and the value of the threshold to which it was compared. The default value of the
threshold parameter is 0.2. Users may change the threshold value by issuing the command

Set Quality Threshold <double=0.2>

The user may also change what type of message is printed in the case of a poor quality, but positive Jacobian mesh. This
message can be printed as a warning (the default) or an error or can be turned off completely using the command

Set Print Quality { WARNING|Error|Off }

The above commands only affect the message generated for meshes with a quality greater than zero and less than the
given threshold value; an error will always be generated for meshes with a quality of zero (that is, for meshes containing
negative Jacobian elements).

593

Controlling Mesh Quality

If the quality of a model after meshing isn't acceptable, there are two options available to improve that quality. The user
can ask for more smoothing, or delete the mesh and start over. There are some commands that the user can invoke
before meshing the model which can help to improve mesh quality. Some of them are discussed here.

Skew Control

The philosophy behind the skew control algorithm is one of subdividing surfaces into blocky, four-sided areas which can
be easily mapped. The goal of this subdivide-and-conquer routine is to lessen the skew that a mesh exhibits on
submapped regions. By controlling the skew on these surfaces, the mesh of the underlying volume will also demonstrate
less skew.

The commands for skew control are:

Control Skew Surface <surface_id_range> [Individual]

Delete Skew Control Surface {surface_list} [Propagate]

The keyword Individual is deprecated. Its purpose is to specify that surfaces should be processed without regards to the
other surfaces in the given list. This is not necessary, and could lead to problems with the final mesh. When the command
is entered, the algorithm immediately processes the surfaces, inserting vertices and setting interval constraints on the
resulting subdivided curves. In this way, the mesh is more constrained in its generation, and the resulting skew on the
model can be lessened. The only surfaces that can utilize this algorithm are those that lend themselves to a structured
meshing scheme, although future releases might lessen this restriction.

The user also has the ability to delete the changes that the skew control algorithm has made. This is done by using the
delete skew control command.

When the user requests the deletion of the skew control changes on a given surface, every curve on that surface will have
the skew control changes deleted, even if a given curve is shared with another surface on which skew control was
performed. If the user wishes to propagate the deletion of skew control to all surfaces which are affected by one (or more)
particular surfaces, the keyword propagate should be used.

Propagate Curve Bias

When a bias mesh scheme is applied to a curve, this sometimes creates skewing of the surface mesh that is attached.
Sometimes the user will want to ensure that the same bias is applied to curves on attached surfaces so that this skewing
is minimized. The command for doing this is:

Propagate Curve Bias [Surface|Volume|Body|Group <id_list>]

This command will search out all simply mappable surfaces in the input list, find which curves of those have a bias
scheme set, and will propagate that bias across the mappable surfaces.

Adjust Boundary

Adjust Boundary {Surface|Group} <id_range> [Angle <double>]

This command can be used to improve element quality for mapped or submapped surface meshes. Often, due to vertex
positions, the curve meshing for a surface will lead to a poor quality surface mesh. This command can be used to adjust
the curve meshes in an attempt to generate a better quality surface mesh. The command works by looking at the angle
the mesh edges leave the boundary. In a perfect mapped or submapped mesh, the mesh edges will be orthogonal to the
boundary, or will go off at 90 degree angles. The adjust boundary command looks at the deviation of the mesh edges, and
if it is greater than the prescribed angle deviation, it will move the node location such that it is 90 degrees, if possible. The
deviation angle by default is 5 degrees and can be changed by the user through the [Angle <double>] option in the
command. In order to modify the curve meshes, the surface meshes are first deleted then later remeshed after the curve
meshes have been repositioned and fixed. This command assumes that the volumes attached to the surface have not
been meshed, if they have been, the command will return an error message. It should be noted that this command, while
useful, may not always work due to interval constraints (i.e., you may need to change the intervals on the surface), or if
the surfaces are not very blocky.

595

Coincident Node Check

The ability to check for coincident nodes in the model is available in CUBIT. It uses an efficient octal hash tree to make
the comparisons. The command is:

Quality Check Coincident Node [In] [Group|Body|Volume|Surface|Curve|Vertex <id_range>] [Merge
[Delete]] [HIGHLIGHT|Draw [color <number>]] [List] [Into Group [names|id]]

If no entity list is given, the command works on all the nodes in the model. If an entity list is given, then it compares the
nodes on those entities with the rest of the nodes in the model. By default the command highlights the coincident nodes in
the graphics window and lists the total number of coincident nodes found. You can also have it clear the graphics and
draw the nodes, and/or list the coincident node ids. Optionally, the coincident nodes found can be placed in a group.

If the model being operated on is from an imported universal file (i.e., no geometry exists in the model), you can merge
the coincident nodes with the merge option. In this case delete allows you to delete the extra nodes (recommended). If
you do not delete them they are placed into an output group.

You can control the tolerance used to check between nodes with the following setting (default = 1e-8):

set Node Coincident Tolerance [<value>]

597

Mesh Topology Check

The ability to check for non-manifold topology among mesh entities is given with the following command.

Quality Check Topology [[Hex <range>] [Tet <range>] [Face <range>] [Tri <range>]]

If no entity list is given, it will check the entire model. Multiple element types are also allowed. The command checks for
non-manifold boundaries (edges) in the element set entered. For quads and tris the command lists and highlights all
edges that have more than two tris or faces connected.

Figure 1. Topology check for quads and tris

For hexes and tets it looks for edges with two or more elements connected that do not share common faces.

Figure 2. Topology check for hexes and tets

Additional topology checks fall into three categories:

 - model edges

 - coincident nodes

 - coincident quadrilateral(faces) or triangles

Model Edge Check

Cubit 13.2 User Documentation

598

The model edge check will find edges with adjoining quadrilaterals or triangles whose angles between the surface
normals exceed a specified value. The default angle is 40 degrees.

The following commands check for model edges:

Topology check model edge {group|volume|surface|curve} <id_range> [angle <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT GROUP[{<name>|{<id>}|nogroup]

Topology check model edge {block|sideset|nodeset} <id_range> [angle <value>] DRAW|nodraw|highlight]
[BRIEF|verbose] [RESULT GROUP[{<name>|{<id>}|nogroup]

Topology check model edge {hex|tet|face|tri|edge} <id_range> [angle <value>] DRAW|nodraw|highlight]
[BRIEF|verbose] [RESULT GROUP[{<name>|{<id>}|nogroup]

The optional angle parameter allows the user to specify a custom angle value against which the check will be performed.
The default angle is 40 degrees.

By default, the command will draw the model edges.

By default, very little information is output to the command line. The optional verbose parameter will output a list of the
flagged model edges.

By default, the model edges will be written to the group ‘model_edges’. Optionally, the user may specify no grouping, or
the user may specify the name or id of an existing group into which the model edges will be written. The contents of the
existing group will be replaced by the model edges.

Interface Checks

Cubit will verify the interfaces between sections of a model. The existence of coincident nodes, for example, may not
necessarily be an error in the model if the nodes are in sliding contact or are constrained by some type of multi-point
constraint. The existence of coincident quadrilaterals or triangles may indicate that the model is not correctly joined.

The following commands check for coincident nodes.

Topology check coincident node {group|volume|surface|curve|vertex} <id_range> [tolerance <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT GROUP[{<name>|{<id>}|nogroup]

Topology check coincident node {block|sideset|nodeset} <id_range> [tolerance <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT GROUP[{<name>|{<id>}|nogroup]

Topology check coincident node {hex|tet|face|tri|edge|node} <id_range> [tolerance <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT GROUP[{<name>|{<id>}|nogroup]

The optional tolerance parameter allows the user to specify a custom tolerance value against which the check will be
performed. The default tolerance is 1.0 e-6.

The default group name is ‘coincident_nodes.’

All other options behave similarly to those described above under Model Edge Check.

The following commands check for coincident quadrilaterals.

Topology check coincident quad {group|volume|surface} <id_range> [tolerance <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT GROUP[{<name>|{<id>}|nogroup]

Topology check coincident quad {block|sideset|nodeset} <id_range> [tolerance <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT GROUP[{<name>|{<id>}|nogroup]

Topology check coincident quad {hex|tet|face} <id_range> [tolerance <value>] DRAW|nodraw|highlight]
[BRIEF|verbose] [RESULT GROUP[{<name>|{<id>}|nogroup]

The default group name is ‘coincident_quads.’

All other optional parameters behave similarly to those described above.

The following commands check for coincident triangles.

Mesh Topology Check

599

Topology check coincident tri {group|volume|surface} <id_range> [tolerance <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT GROUP[{<name>|{<id>}|nogroup]

Topology check coincident tri {block|sideset|nodeset} <id_range> [tolerance <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT GROUP[{<name>|{<id>}|nogroup]

Topology check coincident tri {hex|tet|face|tri} <id_range> [tolerance <value>] DRAW|nodraw|highlight]
[BRIEF|verbose] [RESULT GROUP[{<name>|{<id>}|nogroup]

The default group name is ‘coincident_tris.’

All other optional parameters behave similarly to those described above.

601

Centroid Area Pull

Applies to: Surface Meshes

Summary: Attempts to create elements of equal area

Syntax:

Surface <range> Smooth Scheme Centroid Area Pull [Free]

Discussion:

This smooth scheme attempts to create elements of equal area. Each node is pulled toward the centroids of adjacent
elements by forces proportional to the respective element areas (Jones, 74).

603

Equipotential

Applies to: Volume Meshes

Summary: Attempts to equalize the volume of elements attached to each node

Syntax:

Volume <range> Smooth Scheme Equipotential [Free]

Discussion:

This smoother is a variation of the Equipotential (Jones, 74) algorithm that has been extended to manage non-regular
grids (Tipton, 90). This method tends to equalize element volumes as it adjusts nodal locations. The advantage of the
equipotential method is its tendency to "pull in" badly shaped meshes. This capability is not without cost: the equipotential
method may take longer to converge or may be divergent. To impose an equipotential smooth on a volume, each element
must be smoothed in every iteration--a typically expensive computation. While a Laplacian method can complete
smoothing operations with only local nodal calculations, the equipotential method requires complete domain information to
operate.

605

Laplacian

Applies to: Curve, Surface, and Volume meshes

Summary: Tries to make equal edge lengths

Syntax:

{Surface|Volume} <range> Smooth Scheme Laplacian [Free] [Global]

Discussion:

The length-weighted Laplacian smoothing approach calculates an average element edge length around the mesh node
being smoothed to weight the magnitude of the allowed node movement (Jones, 74). Therefore this smoother is highly
sensitive to element edge lengths and tends to average these lengths to form better shaped elements. However, similar to
the mapping transformations, the length-weighted Laplacian formulation has difficulty with highly concave regions.

Currently, the stopping criterion for curve smoothing is 0.005, i.e., nodes are no longer moved when smoothing moves the
node less than 0.005 * the minimum edge length. The maximum number of smoothing iterations is the maximum of 100
and the number of nodes in the curve mesh. Neither of these parameters can currently be set by the user.

Using the global keyword when smoothing a group of surfaces will allow smoothing of mesh on shared curves to improve
the quality of elements on both surfaces sharing that curve.

607

Smart Laplacian

Applies to: Surface and Volume meshes

Summary: Tries to make equal edge lengths while ensuring no degradation in element shape

Syntax:

{Surface|Volume} <range> Smooth Scheme Smart Laplacian

Discussion:

The Smart Laplacian smoothing approach is a variation on the standard Laplacian algorithm. The algorithm iteratively
loops over the mesh and updates nodes based on the location of their neighbors. First, a patch of elements is formed
around a given node. The quality of this patch is assessed to determine the quality of the worst shaped element. Then a
new candidate node position is calculated as the average of the neighboring nodes. The quality of the patch is assessed
again using the candidate node position. If there has been no degradation in the quality of the elements in the patch, the
candidate node position is accepted; otherwise, the candidate node position is rejected and the node is returned to its
previous position.

The Smart Laplacian smoother is intended to provide a reliable smoother that is nearly as fast as the Length-Weighted
Laplacian smoother. Due to the dual goals of this smoother, making equal edge length and improving element shape, it
will not always be able to make progress. However, it is often useful as a quick alternative to the more time-consuming
optimization methods like Mean Ratio or Condition Number. When this smoother fails to make significant progress, the
optimization methods can be tried.

The Smart Laplacian Smoother uses the Mean Ratio quality measure to assess element shape. This smoother is ensuring
no degradation in the minimum Mean Ratio. The Mean Ratio smoother is optimizing the same metric, but it is attempting
to improve the average Mean Ratio quality.

609

Condition Number

Applies to: Triangular or Quadrilateral Surface Meshes, Tetrahedral or Hexahedral Volume Meshes. Does not apply to
Mixed Element Meshes.

Summary: Optimizes the mesh condition number to produce well-shaped elements.

Syntax:

Surface <surface_id_range> Smooth Scheme Condition Number [beta <double=2.0>] [cpu
<double=10>]

Related Commands:

Untangle

Discussion:

The condition number smoother is designed to be the most robust smoother in Cubit because it guarantees that if the
initial mesh is non-inverted then the smoothed mesh will also be non-inverted. The price exacted for this capability is that
this smoother is not as fast as some of the other smoothers.

Condition Number measures the distance of an element from the set of degenerate (non-convex or inverted) elements.
Optimization of the condition number increases this distance and improves the shape quality of the elements. Condition
number optimization requires that the given mesh contain no negative Jacobians. If the mesh contains negative Jacobians
and this command is issued, Cubit automatically calls the Untangle smoother and attempts to remove the negative
Jacobians. If successful, condition number smoothing occurs next; the resulting mesh should have no negative Jacobians.
If untangling is unsuccessful, condition number smoothing is not performed.

There is no "fixed/free" option with this command; boundary nodes are always held fixed.

The command above only sets the smoothing scheme; to actually smooth the mesh one must subsequently issue the
command "smooth surface <surface_id_range>" or "smooth volume <volume_id_range>".

Stopping Criteria: Smoothing will proceed until the objective function has been minimized or until one of two user input
stopping criteria are satisfied. To input your own stopping criterion use the optional parameters 'beta' and 'cpu' in the
command above. The value of beta is compared at each iteration to the maximum condition number in the mesh. If the
maximum condition number is less than the value of beta, the iteration halts. In Cubit condition number ranges from 1.0 to
infinity, with 1.0 being a perfectly shaped element. Thus the smaller the maximum condition number, the better the mesh
shape quality. The default value of the beta parameter is 2.0. The value supplied for the "cpu" stopping criterion tells the
code how many minutes to spend trying to optimize the mesh. The default value is 10 minutes. Optimization may also be
halted by using "control-C" on your keyboard.

To view a detailed report of the smoothing in progress issue the command "set debug 91 on" prior to smoothing the
surfaces or volumes. You will get a synopsis of whether or not untangling is needed first and whether the stopping criteria
have been satisfied. In addition the following printout information is given for each iteration of the conjugate gradient
numerical optimization:

Iteration=n, Evals=m, Fcn=value1, dfmax=value2, time=value3 ave_cond=value4,
max_cond=value5, min_jsc=value6

n is the iteration count, m is the number of objective function evaluations performed per iteration, value1 is the value of
the objective function (this usually decreases monotonically), value2 is the norm of the gradient (does not always
decrease monotonically), and value3 is the cumulative cpu time (in seconds) spent up to the current iteration. The
minimum possible value of the objective function is zero but this is attained only for a perfect mesh. ave_cond,
max_cond, and min_jsc are the average and maximum condition number, and the minimum scaled jacobian. ave_cond
generally decreases monotonically because it is directly related to value1.

611

Mean Ratio

Applies to: Triangular or Quadrilateral Surface Meshes, Tetrahedral or Hexahedral Volume Meshes. Does not apply to
Mixed Element Meshes.

Summary: Moves interior mesh nodes to optimize the average mean ratio metric value of the mesh.

Syntax:

Surface <surface_id_range> Smooth Scheme Mean Ratio [cpu <double=10>]

Volume <volume_id_range> Smooth Scheme Mean Ratio [cpu <double=10>]

Discussion:

CUBIT includes a mean ratio smoother provided by MESQUITE, a mesh optimization toolkit by Argonne National
Laboratory and Sandia National Laboratories. (See Brewer, et al. 2003 for more details on the MESQUITE toolkit.) This
smoother is similar in purpose to the Condition Number smoother. However, the Mean Ratio smoother uses a second
order optimization method, and therefore it will often reach a near-optimal mesh more quickly than the Condition Number
smoother. The Mean Ratio smoother requires the initial mesh to be untangled, but the smoother is guaranteed to not
tangle the mesh. If the user attempts to call the Mean Ratio smoother on a tangled mesh, an untangler will first attempt to
untangle the mesh before calling the Mean Ratio smoother.

The Mean Ratio smoother's optimization process terminates when one of the following three criteria is met:

1. The mesh is "close" to an optimal mesh configuration.
2. The maximum allotted time has been exceeded.
3. The user interrupts the smoothing process.

The user has control over the second and the third criteria only. For criterion 2, the default is for the smoother to terminate
after ten minutes even if a near-optimal mesh has not been reached. The user can change this time bound by specifying
the optional "cpu" argument in the command listed above. This argument takes a single, positive number that represents
the time (in minutes) that will be used as a time bound. If the user wishes to terminate the process early, criteria three
allows the user to "interrupt" (for example, on some platforms, by pressing CTRL-C) the process. If the process is
terminated early, the mesh will not revert to the original node positions; CUBIT will instead keep the partially optimized
mesh.

613

Winslow

Applies to: Surface meshes

Summary: Elliptic smoothing technique for structured and unstructured surface meshes

Syntax:

Surface <range> Smooth Scheme Winslow [Free]

Discussion:

Winslow elliptic smoothing (Knupp, 98) is based on solving Laplaces equation with the independent and dependent
variables interchanged. The method is widely used in conjunction with the mapping and submapping methods to give
smooth meshes with positive Jacobians, even on non-convex two-dimensional regions. The method has been extended in
CUBIT to work on unstructured meshes.

615

Untangle

Applies to: Triangular or Quadrilateral Surface Meshes Tetrahedral or Hexahedral Volume Meshes. Does not apply to
Mixed Element Meshes.

Summary: Removes as many negative Jacobians from the mesh as possible by minimizing a certain objective function.

Syntax:

Surface <surface_id_range> Smooth Scheme Untangle [beta <double=0.02>] [cpu <double=10>]

Volume <volume_id_range> Smooth Scheme Untangle [beta <double=0.02>] [cpu <double=10>]

Related Commands:

Condition Number

Discussion:

The Untangle 'smoother' is designed to eliminate negative Jacobians from a given mesh by moving nodes to appropriate
locations. If a mesh node is not involved in causing a negative Jacobian it will not be moved. If a mesh has no negative
Jacobians, the Untangler will not move any of the nodes. This smoother is not magic: if an untangled mesh does not exist
for the given mesh topology, the untangler will not untangle the mesh. Instead, it will do the best it can and exit gracefully.
An untangled mesh produced by this smoother will often have poor shape quality; in that case it is recommended that
untangling be followed by condition number smoothing. The untangle smoother is automatically called by the condition
number smoother.

There is no "fixed/free" option with this command; boundary nodes are always held fixed. As a result, users should be
aware that the volume untangler cannot succeed if the volume contains a surface mesh which contains a negative
Jacobian. In that case, one must first remove the surface mesh negative Jacobians by invoking the surface Untangler and
then invoke the volume Untangler.

The command above only sets the smoothing scheme; to actually smooth the mesh one must subsequently issue the
command "smooth surface <surface_id_range>" or "smooth volume <volume_id_range>".

Stopping Criteria: Untangling will proceed until the objective function has been minimized or the optional user input "cpu"
has been satisfied. The latter stopping criterion tells the code how many minutes to spend trying to untangle the mesh.
The default value is 10 minutes. Optimization may also be halted by using "control-C" on your keyboard.

Beta Parameter: An optional user input parameter "beta" plays a role in determining the optimal mesh. Optimization
proceeds until the minimum scaled Jacobian of the mesh is (roughly) greater than beta. To remove negative Jacobians
one would need beta=0 (however, as a safety margin, we choose beta=0.02 as the default). To further improve the scaled
Jacobian of the mesh, input a larger value of "beta". If a mesh with all scaled Jacobians greater than "beta" does not exist,
optimization will continue until the cpu time stopping criterion has been met. Therefore, it is best not to use "beta" values
too large (say, greater than 0.2) without also decreasing the cpu time limit.

To view a detailed report of the smoothing in progress issue the command "set debug 91 on" prior to smoothing the
surfaces or volumes. You will get a synopsis of whether or not untangling is needed and whether the stopping criteria are
satisfied. In addition the following printout information is given for each iteration of the conjugate gradient numerical
optimization:

Iteration=n, Evals=m, Fcn=value1, dfmax=value2, time=value3 min_jsc=value4

n is the iteration count, m is the number of objective function evaluations performed per iteration, value1 is the value of
the objective function (this usually decreases monotonically), value2 is the norm of the gradient (does not always
decrease monotonically), and value3 is the cumulative cpu time (in seconds) spent up to the current iteration. The
minimum possible value of the objective function is zero; this value is attained only when the minimum scaled Jacobian of
the mesh exceeds "beta". The minimum scaled jacobian is also reported.

617

Edge Length

Applies to: Surfaces

Summary: This smoother tries to make all edge lengths equal

Syntax:

Surface <range> Smooth Scheme Edge Length

Discussion:

Edge Length smoothing in Cubit is provided by MESQUITE, a mesh optimization toolkit by Argonne National Laboratory
and Sandia National Laboratories. (See Brewer, et al. 2003 for more details on the MESQUITE toolkit.) This smooth
scheme may be useful for lengthening the shortest edge length in paved meshes.

Interior node positions are adjusted in an optimization loop where the optimal element has an ideal shape (square) and
has an area equal to the average element area of the input mesh.

NOTE: This smoother should be avoided when the mesh contains high aspect-ratio elements that the user wants to keep.

Because this smoother essentially tries to make all the edge lengths equal, it is designed to work well on meshes whose
elements have aspect ratios close to 1. The farther from 1 the aspect ratio is, the less applicable this smoother will be.

619

Mesh Refinement

 Global Mesh Refinement

 Refining at a Geometric or Mesh Feature

 Hexahedral Refinement Using Sheet Insertion

 Directional Refinement

 Local Refinement of Triangles and Edges

CUBIT provides several methods for conformally refining an existing mesh. Conformal mesh refinement does not leave
hanging nodes in the mesh after refinement operations, rather conformal mesh refinement provides transition elements to
the existing mesh. Both local and global mesh refinement operations are provided.

Global Mesh Refinement

The Refine Surface and Refine Volume commands provide capability for globally refining an entire surface or volume
mesh. Global refinement will only be used if the entire body is included in the command. Otherwise, the command will be
interpreted as local refinement (see below.) This distinction can be important because the global refinement algorithm
divides each element into fewer sub-elements than local refinement. The command syntax is:

Refine Volume <range>numsplit<int>

Refine Surface <range>numsplit<int>

The numsplit option specifies how many times to subdivide an element. A value of 1 will split every triangle and
quadrilateral into four pieces, and every tetrahedron and hexahedron into eight pieces. Examples of global refinement on
each element are shown below.

original mesh

NumSplit = 1

NumSplit = 2

original mesh

NumSplit = 1

NumSplit = 2

Cubit 13.2 User Documentation

620

original mesh

NumSplit = 1

NumSplit = 2

original mesh

NumSplit = 1

NumSplit = 2

Figure 1. Example of uniform refinement for each of the mesh entities

Refining at a Geometric or Mesh Feature

CUBIT also provides methods for local refinement around geometric or mesh features. Individual elements or groups of
elements can be refined in this manner using the following syntax.

Refine {Node|Edge|Tri|Face|Tet|Hex} <range>
[NumSplit<int = 1>|Size <double> [Bias <double>]]
[Depth <int>|Radius <double>] [Sizing_Function]
[Smooth]

Refine {Vertex|Curve|Surface} <range>
[NumSplit<int = 1>|Size <double> [Bias <double>]]
[Depth <int>|Radius <double>] [Sizing_Function]
[Smooth]

To use these commands, first select mesh or geometric entities at which you would like to perform refinement.
Refinement will be applied to all mesh entities associated with or within proximity of the entities. The all keyword may be
used to uniformly refine all elements in the model

The following is a description of refinement options.

NumSplit

Defines the number of times the elements around the region will be split. Because of algorithm constraints, the number of
subdivisions for refinement at a geometric feature may be different than for uniform refinement. A NumSplit value of 1 will
split each quadrilateral into nine elements, each tetrahedron into eight elements, and each hexahedron into 27 elements.
This number may also vary depending on the surrounding elements.

Size, Bias

Mesh Refinement

621

The Size and Bias options are useful when a specific element size is desired at a known location. This might be used for
locally refining around a vertex or curve. The Bias argument can be used with the Size option to define the rate at which
the element sizes will change to meet the existing element sizes on the model. Figure 2 shows an example of using the
Size and Bias options around a vertex. Valid input values for Bias are greater than 1.0 and represent the maximum
change in element size from one element to the next. Since refinement is a discrete operation, the Size and Bias options
can only approximate the desired input values. This may cause apparent discontinuities in the element sizes. Using the
default smooth option can lessen this effect. It should also be noted that the Size option is exclusive of the NumSplit
option. Either NumSplit or Size can be specified, but not both.

original mesh

Bias=2.0

Bias=1.5

Figure 2. Example of using the Size and Bias options at a Vertex.

Depth

The Depth option permits the user to specify how many elements away from the specified entity will also be refined.
Default Depth is 1. Figure 3 shows an example of using the depth option when refining at a node.

original mesh

Depth=1

Depth=2

Figure 3. Example of using the Depth option at a node to control how far from the node to propagate the
refinement.

Radius

Instead of specifying the number of elements to describe how far to propagate the refinement, a real Radius may be
entered. The effects of the Radius are similar to that shown in Figure 3, except that the elements whose centroid fall
within the specified Radius will be refined. Transition elements are inserted outside of this region to transition to the
existing elements.

Sizing Function

Refinement may also be controlled by a sizing function. CUBIT uses sizing functions to control the local density of a
mesh. Various options for setting up a sizing function are provided, including importing scalar field data from an exodus
file. In order to use this option, a sizing function must first be specified on the surface or volume on which the refinement
will be applied. See Adaptive Meshing for a description of how to define a sizing function.

Smooth

The default mode for refinement operations is to NOT perform smoothing after splitting the elements. In many cases, it
may be necessary to perform smoothing on the model to improve quality. The smooth option provides this capability.

Cubit 13.2 User Documentation

622

Hexahedral Refinement Using Sheet Insertion

Several tools for refining a hexahedral mesh using sheet insertion and deletion are available in CUBIT.

 Refining at a Geometric Feature

 Refining along a Path

 Refining a Hex Sheet

 Hex Sheet Drawing

Refining at a Geometric Feature

The following commands offer additional controls on refinement with respect to one or more geometric features of the
model.

An existing hexahedral mesh can be refined at a geometric feature using the following command:

Refine Mesh Volume <id> Feature {Surface | Curve | Vertex | Node} <id_range> Interval <integer>

This command refines the mesh around a given feature by adding sheets of hexes. These sheets can be generalized as
planes for surfaces, cylinders for curves, and spheres for vertices. The interval keyword specifies the number of intervals
away from the feature to insert the new sheet of hexes. For this command a single sheet of hexes is inserted into the
hexahedral mesh.

Figure 4 shows an example of this command where the feature at which refinement is to be performed is a curve. In this
case the interval chosen was, 2. This indicated that the elements 2 intervals away from the curve would be refined.

Figure 4. Example of Refinement at a curve

Refining along a path

Hexahedral meshes can be refined from a specific node and along a propagated path using the following command

Refine Mesh Start Node <id> Direction Edge <id> End Node <id> [Smooth]

Figure 5 shows a swept mesh and it's cross section. The cross section view on the left shows a path that has been
propagated through the mesh between the start node and end node. This path is then projected along a chain of edges in
the direction given by the direction edge as shown in Figure 5 . The start node and end node must be on the same sweep
layer. This refinement procedure also requires the volume’s meshing scheme to be set to sweep. If the smooth keyword is
given the mesh will be smoothed after the refinement step is complete.

Mesh Refinement

623

Figure 5. Refining a Mesh Along a Path

Refining a Hex Sheet

The following command can be used to refine the elements in one or more hex sheets:

Refine Mesh Sheet [Intersect] { Node <id_1> <id_2> | Edge <id_range> } { Factor <double> |
Greater_than <size> } [Smooth]

The node and edge keywords are used to define the hex sheet(s) to be refined. If the node option is chosen, only one
node pair can be entered (see Figure 6). If the edge option is chosen, one or more edges can be entered (see Figure 7).

Figure 6. Refine mesh sheet node 796 782 greater_than 6

Figure 7. Refine mesh sheet edge 1584 1564 1533 1502 1471 greater_than 6

The factor and greater_than keywords are used to specify the refinement criteria for the selected hex sheet(s). If the
factor keyword is used, the length of the smallest edge in the hex sheet is determined and any edge in the hex sheet with
a length greater than the smallest length multiplied by the factor is refined. If the greater_than keyword is used, any edge
in the hex sheet with a length greater than the specified size is refined.

Cubit 13.2 User Documentation

624

The intersect keyword is optional. It is used to more easily define multiple hex sheets to be refined. If the intersect
keyword is entered, the node and edge keywords are used to define a chord rather than a sheet (a chord is the two-
dimensional equivalent of the three-dimensional sheet). The chord will be limited to the surface(s) associated with the
nodes or edge entered, and all sheets intersecting the chord will be selected for refinement (see Figure 8). When the node
keyword is used with the intersect option, the nodes must define an edge on the surface of the mesh.

Figure 8. Refine mesh sheet intersect edge 1499 greater_than 6

The smooth keyword is also optional. When the smooth keyword is entered, the elements that have been refined are
smoothed in an attempt to improve element quality. Figure 9 shows the same command as Figure 8 with the addition of
the smooth keyword. Smoothing may or may not be beneficial, depending on the situation.

Figure 9. Refine mesh sheet intersect edge 1499 greater_than 6 smooth

Directional Refinement

Mesh sheet refinement can also be used to refine a mesh in a particular direction. This can help control anisotropy. The
following command can be used as a short cut for specifying what sheets should be used in refinement.

Refine Volumes <id_range> using {Plane <options> | Surface <id_range> | Curve <id_range> } [Depth
<num_layers>] [Smooth]

The volumes specified indicate which hexes can be refined. A transition layer will be made out of hexes surrounding the
indicated volumes. If the depth option is used, additional layers of hexes around the specified volumes will be included in
the refinement region. Behind the using option, if the plane option is employed, all the edges in the volume which are
parallel to the plane (to a small tolerance) are used to specify the sheets to refine. If the surface or curve option is
employed instead, all the edges in the surfaces or curves will be used.

For example, Figure 10 and 11 shows directional refinement using the plane option. Directional refinement can be used
iteratively with sheet dicing to reduce or create anisotropy of any level.

Mesh Refinement

625

Figure 10. Starting mesh

Figure 11. Refine volume 1 using plane xplane depth 1

Cubit 13.2 User Documentation

626

Figure 12. Refine volume 1 using plane xplane depth 1

Hex Sheet Drawing

Since refinement of hex meshes generally occurs by inserting hex sheets, tools have been provided to draw a specified
sheet or group of sheets.

This command draws a sheet of hexes that is defined by the edge or node pair.

Draw Sheet {Edge <id> |Node <id_1> <id_2>}[Mesh [List]] [Color <color_name>] [Gradient]

The following command draws the three sheets that intersect to define the given hex. These sheets are drawn green,
yellow, and red. To draw a specific sheet, list its color in the command.

Draw Sheet Hex <id> [Green][Yellow][Red][Mesh [List]] [Gradient]

The 'gradient' keyword for both commands draws the sheet in gradient shading according to the distance between
opposite hex faces that are parallel to the sheet.

The 'mesh' keyword will draw the hexes in the hex sheet. If the 'list' keyword is also given, the ids of the hexes in the
sheet will be listed.

Local Refinement of Triangles and Edges

Local refinement of triangles and edges is available. When refining triangles a node is inserted at the enter of the triangle
and three new triangles are connected to this node. The original triangle is deleted. The command to refine triangles is:

Refine Local Tri <tri_id_list>

When refining an edge, a node splits the original edge between two triangles and four new triangles are created and
connected to the new node. The command to refine an edge is:

Refine Local Edge <edge_id>

627

Mesh Pillowing

Mesh pillowing is a mesh refinement technique that inserts a layer or 'pillow' of elements around the boundary of an
enclosed mesh. It can be used to improve mesh quality while preserving the outer boundary of the selected element set.
Mesh Pillowing can be used to quickly perform a number of meshing tasks, such as inserting a uniform boundary layer a
specified distance from an outer boundary, or inserting a ring of elements around a hole.

Figure 1: A single hex before (a) and after (b) a pillow operation. The far right (c) depicts a pillow operation with
the front surface designated as a 'through' surface.

During a typical pillow operation, the user selects a set of elements, called a 'shrink set', to define what elements will be
operated on. All elements on the outer boundary of the shrink set are then shrunk towards the center of the set. New
elements are then created to fill the gap between the original boundary and the shrunk boundary. The newly created
elements form the pillow around the selected shrink set. Figure 1a and 1b show an example of a pillow operation
performed on a single hex. Geometry surfaces, or mesh element faces can be specified as through surfaces for the
pillowing operation. This means that the pillow will extend through the selected surfaces, and no new elements will be
created along them. Figure 1c shows the effect of pillowing a single hex with one surface selected as a through surface.

In some cases a shrink set may not be valid due to the geometry of a specific region. As the exterior nodes of the shrink
set move towards the middle they must be able to maintain appropriate geometric associations. Nodes on vertices must
move along curves, nodes on curves must move along surfaces. If there are multiple curves or surfaces along which an
exterior node might travel, then the ownership is ambiguous and the pillowing will fail.

Using the optional distance keyword with a specified value allows manual control of the distance that each boundary
element is shrunk towards the center of the shrink set. If no distance value is specified, an appropriate value is calculated
for each element. If a distance value is specified, all newly created nodes will have their position fixed by default. This
allows the user to smooth the mesh without altering the node positions of the newly created hexes. If the optional
unfix_nodes keyword is used, this default behavior is changed, and any smooth operations will alter the newly created
node locations. By default, a smooth operation is automatically performed following any pillow operation unless the
optional no_smooth keyword is used.

Similar analogous commands are available for creating a pillow around a set of two dimensional faces.

Syntax:

Pillow Hex <ids> [Through { [Surface <ids>][Face <ids>][Tri <ids>] }] [Distance <value>] [Unfix_nodes] [No_smooth]

Pillow Face <ids> [Through Curve <ids>] [Distance <value>] [Unfix_nodes] [No_smooth]

Cubit 13.2 User Documentation

628

Figure 2: Example model using pillow operations to create ordered nodes a specified distance around the
boundary of a mesh.

629

Mesh Coarsening

Hexahedral Coarsening

CUBIT provides a limited number of options for coarsening hexahedral meshes. The options currently available for hex
coarsening rely on the hex sheet extraction process described in Mesh Refinement page. Removing a sheet from a
hexahedral mesh essentially means that a complete layer of hexes will be removed and the adjacent layers expanded to
take its place.

Extracting a Single Hex Sheet

The following command can be used to extract a single hex sheet.

Extract sheet { Edge <id> | Node <id_1> <id_2> }

The edge or node pair are used to define the sheet that will be extracted. Figure 3 below shows an example of extracting
a hex sheet. In this example the hex sheet is specified by the node pair highlighted in the images. Note that the entire
layer of hexes between the highlighted nodes has been removed and the neighboring layers have been expanded to take
its place.

Figure 3. Example of Hex Sheet Extraction

Note: Also see the Mesh Refinement section for a description of hex sheet drawing.

Extracting multiple sheets along a curve

Another option for extracting hex sheets can be done by specifying a curve at which to perform the sheet extraction
operations. In this case, multiple layers of hexes can be removed by specifying a curve perpendicular to the hex layers.
The command for coarsening perpendicular to a curve is as follows:

Coarsen Mesh Curve <id> Factor <value> [NO_SMOOTH|smooth]

Coarsen Mesh Curve <id> Remove {<num_edges>|edge <id_ranges>} [NO_SMOOTH|smooth]

Cubit 13.2 User Documentation

630

Figure 4. Coarsening a mesh by extracting sheets perpendicular to a curve

The first option uses the Factor argument. The factor argument controls how much larger the edges will be on the curve.
For example, Figure 4 shows the coarsen mesh curve command used with a factor of 2. In this case, the command
attempts to make the mesh edges approximately twice the length relative to their original length along the curve.

The second option uses the Remove argument. With this option, a specified number of layers may be removed from the
mesh. This may be accomplished by indicating an exact number, or by providing a list of edge IDs that correspond to the
layers that will be removed.

The NO_SMOOTH|smooth option allows the user to improve the element quality after the sheet extraction process by
smoothing the remaining nodes. The default for both of these commands is to not smooth. Smoothing may also be
accomplished after sheet extraction by using the smooth volume command.

Uniform hex coarsening

By applying the coarsen mesh curve command multiple times to curves that are orthogonal in the model, the effect of
uniform coarsening of the mesh may be achieved.

631

Node and Nodeset Repositioning

A capability to reposition nodesets and individual nodes is provided. This capability will retain all the current connectivity of
the nodes involved, but it cannot guarantee that the new locations of the moved nodes do not form intersections with
previously existing mesh or geometry. This capability is provided to allow the user maximum control over the mesh model
being constructed, and by giving this control the user can possible create mesh that is self-intersecting. The user should
be careful that the nodes being relocated will not form such intersections.

The user can reposition nodes appearing in the same nodeset using the NodeSet Move command. Moves can be
specified using either a relative displacement or an absolute position. The command to reposition nodes in a nodeset is:

Nodeset <nodeset_list> Move <delta_x> <delta_y> <delta_z>

Nodeset <nodeset_list> Move To <x_pos> <y_pos> <z_pos>

The first form of the command specifies a relative movement of the nodes by the specified distances and the second form
of the command specifies absolute movement to the specified position. The third form of the command specifies a
displacement with respect to a specified surface normal.

Individual nodes can be repositioned using the Node Move command. Moves are specified as relative displacements.
The command syntax is:

Node <range> Move <delta_x> <delta_y> <delta_z>

Node <range> Move {[X <val>] [Y <val>] [Z <val>]}

Node <range> Move Normal to Surface <id> distance <val>

Nodes can also be repositioned using a location or direction specification. See Location, Direction, and Axis Specification
for details on the location and direction specification. The command syntax is:

Node <range> Move Location <options>

Node <range> Move Direction <options>

See also Transforming Mesh Coordinates.

633

Collapsing Mesh Edges

CUBIT currently offers several options for modifying an existing finite element mesh. In addition to providing for
coarsening and refining of hexahedral and triangle meshes, CUBIT can also reposition nodes by smoothing or by moving
individual nodes.

The collapse edge command is also provided for making small modifications to an existing triangle mesh.

Meshedit Collapse Edge <id>

This command will collapse the two triangles associated with the given edge, effectively removing the triangles from the
mesh. This command only works on surface meshes, and only with triangles. If volumetric elements, or quads, are
attached to the edge, the command does nothing to the mesh.

635

Align Mesh

At times it is desirable to have identical meshes on two different surfaces or curves. The align mesh command will attempt
to assign correspondence between nodes on surfaces or curves and move the nodes on one surface or curve to match
the configuration on the other. The command syntax is:

Align Mesh Surface <id> [CloseTo] Surface <id> [Tolerance <tol>]

Align Mesh Curve <id> [CloseTo] Curve <id> [Tolerance <tol>]

These two commands align the mesh on the first entity with that of the second entity. This means that nodes on the first
entity will be moved to the closest location possible to their corresponding nodes on the second entity. This is done
without regard to mesh quality, so it is possible to invert elements with this command.

Align Mesh Node <id> [CloseTo] Node <id> [Tolerance <tol>]

This command aligns the first node with the second node, within the limits of the geometric entities that own the nodes.
This is also done without respect for element quality.

And example of this is given as follows:

brick x 10
volume 1 copy move 11
surface all except 10 6 vis off
transparent
graphics perspective off
at 5.552503 3.832384 0.134127
from 34.651051 3.640138 -0.193121
up 0.006514 0.999945 -0.008172 mesh surface all
surface 6 smooth scheme randomize free
smooth surface 6
node 432 move 0 0 -0.2
align mesh node 944 node 432
node 432 move 0 0 0.4
align mesh curve 23 closeto curve 12
align mesh surf 10 closeto surf 6

637

Creating and Merging Mesh Elements

The following forms of the create and merge commands operate on meshed entities only. They allow low-level editing of
meshes to make minor corrections to a mostly correct mesh. They are not designed for major modifications to existing
meshes. Because Cubit's display routines were not designed with these type of operations in mind, these commands may
cause the current display of the affected entities to take an unexpected form. An appropriate drawing command can be
used to return the display to the desired view.

The delete commands for deleting individual elements are still under development, but they may be used after setting a
developer flag.

Creating Mesh Elements

The create command uses existing mesh nodes to create new mesh entities.

Creating Hex and Tet Elements

Create {Hex|Tet} Node <range> [Owner Volume <id>]

Using the nodes specified, this form of the command creates a new hex or tet that will be owned by the specified volume.
For a hex, 8 nodes are required. The order in which the nodes are specified is very important. They should describe two
opposing faces of the hex; the normal of the first face should point into the hex and the normal of the second face should
point out of the hex. For example, to create the hex shown in Figure 1 below, the following command would be entered:

create hex node 1,2,3,4,5,6,7,8 owner volume 1

Figure 1. Node Numbering for the Create Hex command

To create a tet, 4 nodes are specified. The base is specified as a tri with the normal point toward the fourth node using the
right hand rule. To create the tet shown in Figure 2, the following command would be entered:

create tet node 1,2,3,4 owner volume 1

Cubit 13.2 User Documentation

638

Figure 2. Node ordering for Create Tet Command

Creating Wedge Elements

Create Wedge Node <range> [Owner Volume <id>]

To create a wedge, 6 nodes are specified. The base is specified as a tri with the normal pointing inward using the right
hand rule. To create the wedge shown in Figure 3, the following command would be entered:

create wedge node 1,2,3,4,5,6 owner volume 1

Creating and Merging Mesh Elements

639

Figure 3. Node ordering for Create Wedge Command

Note: The wedge command is still under development. To enable this feature, use the developer command features by
issuing the command Set Developer Commands On.

Creating Face and Tri Elements

Create {Face|Tri} Node <range> [Owner {Volume|Surface} <id>]

The next form of the command creates a face or tri that will be owned by the specified volume or surface. Four nodes are
specified for a face, three nodes for a tri. The nodes should be specified in the order needed to produce a face or tri with
the normal in the desired direction using the right hand rule.

Creating Edge Elements

Create Edge Node <range> [Owner {Volume|Surface|Curve} <id>]

This form of the command creates an edge that will be owned by the specified volume, surface, or curve. Two nodes must
be specified; order is unimportant.

Creating Nodes

Create Node Location <x> <y> <z> Owner {Volume|Surface|Curve|Vertex} <id>

The last form of the command creates a node at the specified location that will be owned by the specified volume, surface,
curve, or vertex. The location is specified by three absolute values that represent the position of the node in 3D space.

Merging Nodes

The merge node command is used to join two mesh entities one node at a time. It should be used with care because
merging nodes of different meshed entities may have unpredictable results. The syntax is:

Cubit 13.2 User Documentation

640

Merge Node <id1> <id2>

The merge node command replaces the node specified as id1 with the node id2. The command is equivalent to deleting
node id1 and creating node id2 in the same location. The resultant merged node takes on the characteristics of the
replaced node such as position and owner. This may include some or all of the higher level mesh entities related to the
merged node.

Caution should be taken when using the merge node command because other commands involving the related meshed
entities may not work properly following the merge.

641

Cleaning Up a Tetrahedral Mesh

An alternative to the remesh command for tetrahedral meshes is the cleanup command. For this command the existing
mesh is validated and "optimized" by the tetmesher, instead of being deleted.

To cleanup a tetrahedral volume mesh use the following command:

Cleanup {Volume|Block} <id_range>

A second variation of the Cleanup command allows remeshing of tetrahedra that are either part of a free mesh (not owned
by a volume) or are a subset of the tetrahedra in the volume. The command is:

Cleanup Tet <id_range> [Free]

For example, the command

cleanup tet all free

will gather all tetrahedra in a free mesh or single volume, generate a triangle boundary surface, and "optimize" the mesh,
ignoring any volume or blocks. Without the optional free keyword, the tets will be processed volume by volume or block by
block retaining the boundary between adjacent volumes or blocks.

Also, the command

cleanup tet 200 to 300

will gather the tetrahedra in the range [200, 300], generate a triangle boundary surface, and "optimize" the mesh. If the
tetrahedra in the range are disjointed, i.e., multiple, independent sets, this operation may fail. It is best to specify a
contiguous set of elements.

Note: Cubit will issue an error if the tetrahedra are owned by more than one volume or mesh container.

643

Mesh Validity

After a mesh is generated, it is checked to ensure that the mesh has valid connectivity. If an invalid mesh is formed, then
CUBIT automatically deletes it. This default behavior can be changed with the following command:

Set Keep Invalid Mesh [on|off]

The current behavior can be viewed with the following command:

List Keep Invalid Mesh

The Jacobian quality metric is also computed automatically to check quality after a mesh is generated. If the quality is
poor, a warning is printed to the terminal.

645

Geometry Adaptive Sizing Function (Skeleton
Sizing)

The Geometry Adaptive Sizing Function, also referred to as the Skeleton Sizing Function (Quadros 2005; Quadros
2004; Quadros 2004(2)), automatically generates a mesh sizing function based upon geometric properties of the model.
This sizing scheme attempts to create a sizing function that allows unstructured meshing schemes to generate a mesh
with the following properties:

 The sizes of the mesh elements vary smoothly throughout the mesh

 The mesh elements resolve the geometry to a sufficient degree

 The mesh elements do not over-resolve the geometry.

The geometry adaptive sizing function can be used to create sizing information for surfaces, solids, and assemblies.

This sizing function uses geometric properties to influence mesh size. The scheme calculates or estimates:

 3D-proximity (thickness though the volume)

 2D-proximity (thickness across a surface)

 1D-proximity (curve length)

 Surface curvature

 Curve curvature.

These properties are then used to calculate a sizing function throughout the geometric entity (or entities). Regions of
relatively high complexity will have a fine mesh size, while regions of relatively low complexity will have a coarse mesh
size. For example, generally, a high-curvature region on a surface will have a finer mesh size than a low-curvature region
on that surface

Cubit 13.2 User Documentation

646

Figure 1: Overview of Computational Framework

Figure 2: Skeleton Sizing Function example in the GUI

Geometry Adaptive Sizing Function (Skeleton Sizing)

647

Skeleton Sizing Behaviors

Skeleton sizing can be specified on single or multiple surface(s)/volume(s) at a time from the GUI (Meshing Control Panel)
or the command-line. The following describes how specifying sizing on entities can change skeleton sizing’s behavior:

Single surfaces/volumes – If skeleton sizing is applied to surfaces/volumes one at a time, each entity’s sizing is not
influenced by the others. On the command-line, issue a separate command for each entity. In the GUI, specify only one
surface or volume before selecting “Apply Size”.

Multiple surfaces – If skeleton sizing is applied on multiple surfaces together, then geometric features of a particular
surface may affect its neighboring surfaces.

Multiple volumes (assembly sizing) – Skeleton sizing can be applied to assembly models so that geometric features of a
volume may influence its neighbors. Volumes should first be imprinted and merged before they are specified together for
skeleton sizing.

Command Line Syntax

Skeleton sizing on surfaces:

Surface <surface_id_range> Sizing Function Skeleton
{[scale <1 to 10 = 7>] [time_accuracy_level <1 to 3 = 2>]
[min_depth <3 to 8 = 5>] [max_depth <4 to 9 = 7>]
[min_num_layers_2d < 1 to N = 1>] [min_num_layers_1d < 1 to N = 1>]
[max_span_ang_surf <5.0 to 75.0 = 45.0 degrees>]
[max_span_ang_curve <5.0 to 75.0 = 45.0 degrees>]
[min_size <float>] [max_size <float>] [max_gradient <float=1.5>]}

Skeleton sizing on volumes:

Volume <range> Sizing Function Skeleton
{[scale <1 to 10 = 7>] [time_accuracy_level <1 to 3 = 2>]
[min_depth <3 to 8 = 5>] [max_depth <4 to 9 = 7>]
[min_num_layers_3d < 1 to N = 1>] [min_num_layers_2d < 1 to N = 1>]
[min_num_layers_1d < 1 to N = 1>]
[max_span_ang_surf <5.0 to 75.0 = 45.0 degrees>]
[max_span_ang_curve <5.0 to 75.0 = 45.0 degrees>]
[min_size <float>] [max_size <float>] [max_gradient <float=1.5>]}

The options are explained below:

Basic Arguments

 max_size (default=auto): The value for max_size is calculated automatically by default. Users can specify any
positive real number based on the dimensions of the model to control the max size of the elements. If the
skeleton sizing function creates large elements, than this argument can be used to control the maximum
element size.

 min_size(default=auto): The value for min_size is calculated automatically by default. Users can specify any
positive real number based on dimension of the model to specify the minimum size of the elements.

 max_gradient (1.0 to 3.0, default 1.5): The transition in element size is controlled using this parameter. Larger
values of max_gradient result in fewer elements, but also lead to more abrupt transitions in size and possibly
poorer quality elements.

Scaling and Accuracy Arguments:

 scale (1 to 10, default 7): The overall size of the elements is controlled by this argument. A coarser mesh can
be generated by increasing the value of scale up to 10.0. To get a finer mesh, decrease the value of the scale
(minimum value = 1).

 time_accuracy_level (1 to 3, default 2): This controls the computational time and accuracy level by adjusting
various internal parameters of the skeleton sizing function. Users should try levels in increasing order. Level 1
takes the shortest time to compute the skeleton sizing function and Level 3 takes the longest time to compute
the skeleton sizing function. However, Level 1 is less accurate than Level 2 and Level 3.

Cubit 13.2 User Documentation

648

Advanced Arguments

Lattice Arguments:

The skeleton sizing function is generated and stored on a background octree grid whose cells are subdivided based on
the graphics facets of the model. The level of subdivision of the background grid affects how well the sizing function
captures the geometric complexity of features. Reasonable defaults have been selected for the following two refinement
(subdivision) parameters, but these may be overridden for use with simple (decrease parameters) or more complex
(increase parameters) models.

 min_depth (default 4): min_depth controls the maximum cell dimension of the background octree grid. The
higher the value of min_depth, the smaller the dimension of the maximum-sized cell. Computational time
increases with increasing min_depth

 max_depth (default 6): max_depth controls the minimum cell dimension. If the object contains very fine
features then increasing the value of max_depth is suggested. The maximum depth has been limited to 9

Note: These arguments override the basic arguments. For example, time accuracy level 1 internally sets min_depth = 4
and max_depth = 6, and when min_depth is set to 4 and max_depth is set to 7 in the advanced options (recommended
for models with fine features), then advanced options override the basic options. In the command-line, to override the
depths set by a time_accuracy_level, specify min_depth and max_depth after it.

Source Entity Arguments

 min_num_layers_3d (Any value greater than 1, default 1): This parameter ensures that a minimum specified
number of layers exist across the thickness of the volume. This parameter could be useful in generating
meshes for mold flow simulation.

 min_num_layers_2d (Any value greater than 1, default 1): This parameter ensures that a minimum specified
number of layers exist across the thickness of a surface.

 min_num_layers_1d (Any positive integer value, default 1): This ensures that any curve contains a minimum
specified number of intervals.

 max_span_ang_curve (Range 5.0 to 75.0, default 45.0): Maximum spanning angle is a parameter that controls
the mesh size at curved regions of curves. It is defined as the angle subtended by the normals at the end nodes
of the mesh edge in the curved region of a curve. When a finer mesh is needed at curved regions of curves,
then max_span_ang_curve should be decreased.

 max_span_ang_surf (Range 5.0 to 75.0, default 45.0 deg): Maximum spanning angle is a parameter that
controls the mesh size at curved regions of surfaces. It is the angle subtended by the normals at the end nodes
of the mesh edge in a curved region of a surface. When a finer mesh is needed at curved regions of surfaces,
then max_span_ang_surf should be decreased.

Skeleton with Other Sizing Controls

Skeleton sizing function produces a smooth sizing function when called with other sizing controls available in Cubit.
Skeleton sizing function behaves as SOFT firmness level. Skeleton sizing function always respects interval count
specified on the curves. Skeleton sizing function respects interval size on curves and surfaces only if it is specified after
calling the skeleton sizing function.

Geometry Adaptive Sizing Function (Skeleton Sizing)

649

Figure 3: Skeleton sizing function with other sizing controls

Limitations

 Currently, the skeleton sizing function is primarily intended for use with ACIS models. Skeleton sizing may be
used on facet-based models (STL, facet, and MBG format) models, but results are not guaranteed. Sizing
function generation with other geometry engines in Cubit is not guaranteed or supported in Cubit 10.1.

 The skeleton sizing function has mainly been tested with trimesh and tetmesh schemes. In general, structured
or semi-structured meshing schemes do not have enough flexibility to utilize the skeleton sizing function. It is
recommended that the skeleton sizing be used only with unstructured meshing schemes. However, if using
skeleton sizing in conjunction with the pave scheme for surfaces, decreasing the max_gradient and scale
arguments is suggested.

 For sizing function generation of assemblies in Cubit 10.1, at least time_accuracy_level 2 is generally
recommended. This helps ensure that the geometric complexity of small features is captured. For example,
“volume all sizing function skeleton time_accuracy_level 2”

651

Bias Sizing Function

Syntax:

Surface <id> Sizing Function Type Bias Start Curve <id_range>
{Finish Curve <id_range>| Factor <val>}

Synopsis:

The Bias sizing function for surfaces is similar to biasing curves. Indeed, setting a bias sizing function for a surface will
bias the boundary curves, as well as control paving to follow the bias inside the surface. You first specify the size of a
couple of bounding curves (the start curves), then specify the bias sizing function for the surface.

Discussion:

Recall that for biasing curves, you specify the start and end vertex. For the bias sizing function, you specify the start
curves, from which to bias away. The sizes of these curves should already be set before setting the surface sizing
function since their average size is taken to be the starting size (almost). If the start curve sizes change, then you should
set the surface sizing function again.

You can either supply a geometric factor, or the set of finish curves whose sizes you want to match at that distance. A
geometric factor. It automatically sizes and biases or dualbiases the non-start curves, including any finish curves. These
curves need not be perpendicular to the starting curves. The interval count and scheme are soft-set, so they won't be
changed if they are already hard-set. If the size of the start curves or finish curves are changed, then the sizing function
command should be re-issued.

The sizing function value at a point is defined in terms of the straight-line distance from the point to the closest starting
curve. So, it works best if all the starting curves have the same size, and the surface is relatively flat. But, starting curves
need not be parallel to one another. Similarly, the non-start curves need not have any particular orientation wrt the start
curves.

The bias sizing function was designed to easily set the sizes of a sequence of adjoining surfaces: assign a size to the
curve you want to bias away from, then set the bias sizing function of the first surface, with its finish curves being the start
curve of the second surface, etc. See the last example below.

Examples:

Here are some example journal files and resulting pictures:

bias_sz_fn_demo.jou
brick x 100 y 10 z 10
color vol 1 red
surface 1 scheme pave
surface all except 1 visibility off
label curve interval
graph text 2
display

mesh 1
curve 4 size 2
surface 1 sizing function type bias start curve 4 factor 1.3
mesh surface 1
see figure 1

Figure 1. Surface with bias sizing function factor > 1.

Cubit 13.2 User Documentation

652

mesh 2
delete mesh
surface 1 sizing function type bias start curve 4 factor {1/1.1}
mesh surface 1
see figure 2

Figure 2. Surface with bias sizing function factor < 1

mesh 3
reset
cyl rad 6 z 1
cyl rad 4 z 1
sub 2 from 1
section body 1 yplane
section body 1 xplane
surf all except 19 vis off
color vol 1 red
display

finish curve mesh
surf 19 scheme qtri base scheme pave
surface 19 size 0.7
curve 26 size 0.07
surface 19 sizing function type bias start curve 26 finish curve 25
mesh surface 19
pause
see figure 3

Bias Sizing Function

653

Figure 3. Surface with bias sizing function start and finish curve. Scheme qtri, base scheme pave.

dual bias mesh
delete mesh
curve 25 26 size 0.02
curve 25 26 scheme equal
surface 19 sizing function type bias start curve 26 25 factor 1.3
mesh surface 19
zoom curve 12
pause
see figure 4

Cubit 13.2 User Documentation

654

Figure 4. Close up of surface with dual bias sizing function start and finish curve. Scheme qtri, base scheme
pave.

funny face
reset
prism sides 5 z 1 radius 1
cylinder radius 0.1 z 1
body 2 move -0.4 0 0
subtract 2 from 1
cylinder radius 0.1 z 1
body 3 move 0.2 0 0
subtract 3 from 1
prism sides 6 radius 0.2 z 1
body 4 move 0 -0.4 0
subtract 4 from 1
surface all except 34 visibility off
color vol 1 red
display
surface 34 scheme pave
curve 23 19 size 0.01
surface 34 sizing function type bias start curve 19 23 factor 1.3
mesh surface 34
see figure 5

Bias Sizing Function

655

Figure 5. Bias away from two round holes.

bias surface chain
reset
cylinder radius 1 z 1
cylinder radius 0.2 z 1
cylinder radius 0.4 z 1
cylinder radius 0.8 z 1
imprint body all
delete body 2 3 4
section body 1 xplane
section body 1 yplane
surface all except 42 43 44 45 vis off
color volume 1 red
surface all scheme pave
curve 55 interval 36
surface 43 sizing function type bias start curve 55 factor 1.3
surface 44 sizing function type bias start curve 57 factor 1.3
curve 57 had its size determined by a prior bias sizing function
surface 45 sizing function type bias start curve 58 factor 1.3
surface 42 sizing function type bias start curve 55 factor 1.3
mesh surface 42 43 44 45
display
highlight curve in surface 42 43 44 45
see figure 6

Cubit 13.2 User Documentation

656

Figure 6. A chain of biased surfaces. Only one curve's intervals were explicitly set.

657

Constant Sizing Function

Syntax:

Surface <id> Sizing Function [Type] Constant

Volume <id> Sizing Function [Type] Constant

Synopsis:

The Constant sizing function specifies that a constant element size be used over the interior of the surface or volume.
The value used as the constant size is the interval size that has been set for the entity. For example, the following
commands will cause the mesh size to be smaller on the interior than on the surface's bounding curves.

reset
brick x 10
surface 1 scheme pave
curve in surface 1 interval 5
surface 1 size 0.5
surface 1 sizing function constant
mesh surface 1

Figure 1. Constant Sizing Function

659

Curvature Sizing Function

The Curvature sizing function determines element size based on the curvature evaluation of a surface at the current
location. Two surface curvature values (taken perpendicular to each other) are compared at the location of interest, and
the largest is used as the sizing function for the mesh. Figure 1 shows a solid with a highly deformed surface which
displays rapid change of surface curvature at several locations.

Figure 1. NURB solid with high surface curvature change

Figure 2 depicts a normal paved mesh of this surface using a common size on all bounding curves and no sizing function
in the interior. The total number of quadrilateral shell elements for this case is 1988. Figure 3 shows a mesh which was
generated with the curvature sizing function option. The mesh is graded denser in the regions of quickly changing
curvature, such as at the tops of the hills and at the bottom of the valley. Due to the intense interrogation of the underlying
geometric modeler which the curvature method relies on, this option can be very computationally expensive.

Figure 2. NURB mesh with no interior sizing function

Cubit 13.2 User Documentation

660

Figure 3. NURB mesh with curvature sizing function

661

Linear Sizing Function

The Linear class of sizing functions determines element size based on a weighted average of edge lengths for mesh
edges bounding the surface being meshed. There are several variants of this class of sizing function. The Linear function
bases edge length at a location on the lengths of edges bounding the surface weighted by their inverse distance from the
current location. The result of this weighting is a more gradual change in mesh density during a transition between dense
and coarse mesh. Figure 1 shows the same NURB surface mesh but with intervals of 34 on two curves and intervals of 16
on the remaining two bounding curves and no sizing function. It can be observed that the mesh progresses more rapidly
inward from the coarser meshed curves, which locates the transition region much closer to the finer meshed curves. To
combat this, the Linear function weights the sizing of new elements such that these transitions occur slower. Figure 2
displays two views of the same NURB geometry with the same bounding curve mesh density using the linear sizing
function.

Figure 1. NURB mesh with no sizing function, 34 by 16 density

Cubit 13.2 User Documentation

662

Figure 2. NURB mesh with linear sizing function, 34 by 16 density

663

Interval Sizing Function

The Interval sizing function is similar to the Linear function, but bases edge length at a location on the squared lengths of
edges bounding the surface weighted by their inverse distance from the current location. An example is shown below.

Figure 1. NURB mesh with interval sizing function, 34 by 16 density

665

Inverse Sizing Function

The Inverse sizing function is also similar to the Linear function, but this method bases edge length at a location on the
inverse lengths of edges bounding the surface weighted by their inverse distance from the current location (see Figure 1).
The difference between the three linear sizing functions (Linear, Interval, Inverse) is sometimes subtle, but is driven by the
geometry being meshed since the influence of these functions is strongly controlled by the number, positioning, and mesh
density of the bounding curves relative to the interior surface area.

Figure 1. NURB mesh with inverse sizing function, 34 by 16 density

667

Exodus II-based Field Function

The ability to specify the size of elements based on a general field function is also available in CUBIT. With this capability,
the desired element size can be determined using a field variable read from a time-dependent variable in an Exodus II file.
Both quadrilateral and triangle elements are supported for surfaces, but only tetrahedral elements are supported for
volumes at this time.

A field function is a time-dependent variable in an Exodus II file. Either node-based or element-based variables may be
used. Currently, field functions are imported from element and node-based Exodus II data. The mesh block containing the
corresponding elements must be imported along with the field function data.

Exodus variable-based adaptive meshing is accomplished in CUBIT in several steps:

1. Surface mesh scheme set to Pave or TriAdvance, and/or volume mesh scheme set to Tetmesh. Bounding
curve mesh schemes can also optionally be set to Stride (see comments below.)

2. An Exodus mesh and time-dependent variable for that mesh is read into CUBIT.
3. The mesh and variable data are associated to geometry.
4. The Exodus variable is normalized to give localized size measures, and the surface/volume sizing function type

is designated.
5. Geometry is meshed

Importing a field function and associating it with its geometry, and normalizing that function are done in two separate steps
to allow renormalization. The following command is used to read in a field function and its associated mesh:

Import Sizing Function '<exodusII_filename>' Block <block_id> Variable `<variable_name>' Time
<time_val> [Deformed]

where block_id is the element block to be read, variable_name is the Exodus time-dependent variable name (either
element-based or nodal-based),and time_val is the problem time at which the data is to be read. The Deformed keyword
indicates whether deformation has been accounted for on the new model (for information on creating deformed 2D
geometry from EXODUSII data, see Importing 2D EXODUSII Files) and needs to be accounted for in the sizing function
data. When this command is given, the nodes and elements for that element block are read in and associated to geometry
already initialized in CUBIT.

Note that when a sizing function is read in, the mesh is stored in an ExodusMesh object for the corresponding geometry,
and therefore the geometry is not considered meshed. Also note that if deformation is not being modeled, the geometry to
which the mesh is being associated must be in the same state as it was when that mesh was written (see Importing a
Mesh for more details on importing meshes).

Once the field function has been read in and assigned to geometry, it can be normalized before being used to generate a
mesh. The normalization parameters are specified in the same command that is used to specify the sizing function type
for the surface or volume. The syntax of this command is:

Surface <id> Sizing Function Type Exodus [Min <min_val> Max <max_val>]

Volume <id> Sizing Function Type Exodus [Min <min_val> Max <max_val>]

If normalization parameters are specified, the field function will be normalized so that its range falls between the minimum
and maximum values input. Subsequent normalizations operate on the normalized data and not on the original data. If an
element-based variable is used for the sizing function, each node is assigned a sizing function that is the average of
variables on all elements connected to that node. Nodal variables are used directly.

After the sizing function normalization, the geometry may be meshed using the normal meshing command.

For example, the left image in Figure 1 depicts a plastic strain metric which was generated by PRONTO-3D [Taylor, 89] a
transient solid dynamics solver, and recorded into an ExodusII data file. When the file is read back into CUBIT, the paving
algorithm is driven by the function values at the original node locations, resulting in an adaptively generated mesh
[Attaway, 93]. The right image in Figure 1 depicts the resulting mesh from this plastic strain objective function.

Cubit 13.2 User Documentation

668

Figure 1. Plastic strain metric and the adaptively generated mesh

Curve Meshing with Exodus II - based Field Functions

In addition to the capability to adaptively mesh surface using a field function, curves may also be meshed separately using
the Exodus II information. The Stride scheme for meshing curves is used for this purpose. If the user does not specify a
mesh scheme for the curve, Cubit will default to scheme Stride when the Exodus sizing function is used for surfaces and
volumes defined by that curve.

669

Importing Exodus II Files

 Importing a Free Mesh without Geometry

 Importing a Free Mesh onto Existing Geometry

 Creating Mesh-based Geometry on Import

 Importing a Preview Mesh

The commands to import meshes from an Exodus II format file are:

Import Mesh '<exodusII_filename>' [Block <block_ids>] [Unique Genesis IDs] [Shell] No_Geom
[group_name '<free_mesh_group_name>']]

Import Mesh '<exodusII_filename>' [Block <block_ids>] [Unique Genesis IDs] [Shell]
[{Group|Body|Volume|Surface|Curve|Vertex} <id_range> | Preview]

Import Mesh Geometry '<exodusII_filename>' [Block <id_range>|ALL] [Start_id <id>] [Use
[NODESET|no_nodeset] [SIDESET|no_sideset] [Feature_Angle <angle>]
[LINEAR|Gradient|Quadratic|Spline] [Deformed {Time <time>|Step <step>|Last} [Scale <value>]]
[MERGE|No_Merge] [Export_facets <1|2|3>] [Merge_nodes <tolerance>]

Related Commands:

Import Mesh Geometry (options)

Import Free Mesh (2D)

Delete Mesh Preview

Export [Genesis | Mesh] '<filename>'

List Import Mesh NodeSet Associativity

List [Export Mesh] NodeSet Associativity

[Set] Import Mesh NodeSet Associativity [ON|off]

[Set] [Export Mesh] NodeSet Associativity [on|OFF]

Transforming Mesh Coordinates

Set Import Mesh [Vertex] [Curve] [Surface] Tolerance <distance>

Set Import Mesh NodeSet Order [On|Off]

List Import Mesh NodeSet Order

Importing a Free Mesh Without Geometry

The command to import a free mesh from an Exodus II format file without mesh-based geometry is:

Import Mesh '<exodusII_filename>' [Block <block_ids>] [Unique Genesis IDs] [Shell] No_Geom
[group_name '<free_mesh_group_name>']]

When a free Exodus II mesh is imported into Cubit, it contains no geometric or topological information. Previously, the
user could either associate that mesh with existing geometry, or build mesh-based geometry to fit the mesh. A third
option, as of Cubit 11.1, allows the user to retain the disassociated mesh as a free mesh inside Cubit.

A free mesh may be modified as described in the Free Mesh section of the documentation. This includes limited access to
smoothing, renumbering, transformations, refinement, mesh quality, and other mesh centric operations.

When an Exodus II File is imported as a free mesh, Cubit will automatically create a group called "free_elements" to
contain the free mesh elements.

file:///C:/help_cubit_13_2/source%20files/mesh_generation/mesh_import/mesh-based

Cubit 13.2 User Documentation

670

Note: The Import Mesh [No_Geom] command is not to be confused with the Import Free Mesh command which applies
only to 2D Exodus II Files.The term "Free Mesh" in both places of the documentation refers to the same thing - a mesh
without geometry. However, in the case of all other import mesh commands, the imported free mesh ends up associated
with geometry. The Import Mesh [No_Geom] is the only way to import a free mesh that remains disassociated from
geometry.

Importing a Mesh Onto Existing Geometry

The command to import a free mesh from an Exodus II format file and associate it with existing geometry is:

Import Mesh '<exodusII_filename>' [Block <block_ids>] [Unique Genesis IDs] [Shell]
[{Group|Body|Volume|Surface|Curve|Vertex} <id_range> | Preview]

The user can import a mesh from an Exodus II file and associate the mesh with matching geometry. The resulting mesh
may then be manipulated normally. For example, the mesh may be smoothed or portions of it deleted and remeshed. The
user can save their work by exporting the geometry and mesh, and then restore the geometry and mesh later. In some
cases, saving and restoring can be faster or more reliable than replaying journal files.

Saving and importing a mesh may be useful for teams working on creating a conforming mesh of a large assembly so that
they can pass information to one another. For example, a team member can export the mesh on the surfaces between
two parts, and another team member import the mesh for use on an adjoining part of the assembly.

As of cubit version 7.0, any higher order elements, block definitions, nodesets, and sidesets are retained on import.

Importing a Mesh with Nodeset Associativity

Meshes can be imported into CUBIT that contain nodeset associativity data used for defining finite element boundary
conditions. If an exported CUBIT mesh is going to be imported back onto the same geometry, then before exporting the
user should issue the following command:

set export mesh nodeset associativity on

This causes extra nodeset data to be written, which associates every node to a geometric entity, resulting in an import
which is more reliable. When importing, if the user does not want to use the nodeset associativity data that exists in a file,
then before importing the following command should be used:

set import mesh nodeset associativity off

The user may wish to turn geometry associativity off if, for example, the geometry is no longer identical as a result of
curves being composited, or CUBIT names changed due to a ACIS version changes.

Importing a Mesh onto Modified Geometry

Although there are some exceptions, CUBIT requires that the mesh be imported onto the same geometry from which it
was exported.

Since merge information is not stored with the ACIS representation, care should be taken that the geometry is merged the
same way on export and import of the mesh. If not, importing the mesh one block at a time in successive commands may
increase the chance of a successful import, at the cost of more memory and time.

Between exporting and importing a mesh, the geometry may be modified slightly by compositing entities. Mesh import will,
however not be successful if entities are partitioned or a body is webcut. In some cases mesh import may be successful
on modified geometry if the new vertices match up exactly with nodes of the mesh, and the new curves match up exactly
with edge chains of the mesh. Unless this criteria is met, associating the mesh with the geometry will be unsuccessful.

Mesh Import Tolerance

To change the tolerance with which imported mesh must line up with geometry issue the command:

Set Import Mesh [Vertex] [Curve] [Surface] Tolerance <distance>

Importing Exodus II Files

671

Specifying a Portion of the Mesh to be Imported

The Block option in the Import Mesh command indicates that only the specified element block should be imported from
the Exodus II file. In the same manner, the Volume and other geometry options provide a way to import the nodes and
element on the indicated geometry. If neither a block nor a geometry entity is specified, then the entire mesh file is read.

If a block is specified without specifying a geometry entity, associativity or proximity is used to determine which volume
the block elements should be associated with. If a block and a volume are specified, the block elements are associated
with the specified volume, provided they actually match. If a volume is specified without a block, associativity data is
used to find a block corresponding to the given volume.

Unique Genesis IDs and Shell Options

The Unique Genesis IDs option is used to preserve ids in the genesis file in the case that id overlap exists when importing
into CUBIT. This can occur when importing into an active session where CUBIT ids have already been assigned.

The Shell Option is used as a flag to alert the program that there are shell elements in the file. Shell elements can not
always be detected by the import program, and this ensures that the shell elements will be included in the model.

Nodeset Ordering

If the Import mesh NodeSet Order flag is on, the nodesets will be read in a manner which allows them to be associated
with existing geometry. This means the nodesets are assumed to be in ascending order. If the flag is set to false, the
goemetry nodesets in imported mesh files are assumed to be in random order. This value is on by default, and should not
need to be changed by the user.

Creating Mesh-Based Geometry on Import

CUBIT's mesh generation tools require an underlying geometry representation. In most cases, the ACIS solid modeling
engine, compiled with CUBIT, is used to represent the geometry. However, in some cases, an ACIS representation is not
available, and a previously developed finite element mesh is the only available representation of the model. In order to
utilize CUBIT's mesh generation tools, the import mesh geometry command provides an option for creating geometry
directly from the finite element mesh.

The import mesh geometry command will create a new volume for every block defined in the Exodus II file. It will also
create curves, surfaces and vertices at appropriate locations on the model based on dihedral angles (also called feature
angles) and assigned nodesets and/or sidesets. The mesh used to construct the geometry will be owned by the new
geometric entities. This means that the mesh can be deleted, remeshed, or smoothed using any of CUBIT's meshing tools
by simply using the new geometry definition. CUBIT will assign appropriate intervals to the new curves as well as
determine an acceptable meshing scheme for surfaces and volumes.

The command to import a finite element mesh from an ExodusII format file and generate geometry from the mesh is:

Import Mesh Geometry '<exodusII_filename>'
[Block <id_range>|ALL] [Start_id <id>] [Use [NODESET|no_nodeset] [SIDESET|no_sideset]
[Feature_Angle <angle>] [LINEAR|Gradient|Quadratic|Spline] [Deformed {Time <time>|Step
<step>|Last} [Scale <value>]] [MERGE|No_Merge] [Export_facets <1|2|3>] [Merge_nodes
<tolerance>]

File Name

Type the name of file to import in single quotation marks. The file must reside in the current directory. For information on
changing the current directory, see CUBIT environment commands. To list all the files in the current directory, type ls at
the command prompt.

Blocks

Use this option to select the specific blocks to be imported from the Exodus II file. If no blocks are entered, then all blocks
will be read and imported from the file. Standard ID parsing can also be used in this argument to select a range of blocks.
For example "1 to 5" or "1, 5 to 10 except 6".

Each unique block selected to be imported will define a new body in the geometric model. Figure 1 shows a simple
example of the geometry generated from the 3D finite element mesh.

Cubit 13.2 User Documentation

672

Figure 1. Example of mesh based geometry (right) created from a finite element mesh (left)

Blocks may be composed of 1D, 2D or 3D elements. For blocks composed of 2D elements (i.e. QUAD4, SHELL etc.), a
sheet body will be created. One dimensional elements (i.e.. BEAM, TRUSS, etc.) will define curves. Where a block may
be composed of more than one disconnected sets of elements, one body will be created for each continuous region of
elements assigned to the same block. Where possible, the ID of the new body will be the same as the block ID. Since IDs
must be unique, if a body ID is already in use, the next available ID will automatically assigned by the program.

Start ID

Use this option to specify an alternate ID value for imported entities. The specified value will be used as the starting ID for
BOTH nodes and mesh elements. The new IDs will be assigned consecutively from the starting value. If the new ID
values for any of the imported entities would conflict with existing IDs, the command does not abort but moves the starting
ID for all element types to the same useable starting ID value.

Nodesets/Sidesets

Use the nodeset and sideset options to use any nodeset and sideset information in the Exodus II file in constructing
geometry. Recall that nodesets and sidesets are generic boundary condition data assigned to nodes, edges or faces of
the finite elements. It is useful to group mesh entities belonging to unique boundary conditions into geometric entities. This
permits the user to remesh a particular region of the model without having to reassign boundary conditions.

If the nodeset and sideset arguments are given, geometric entities will be generated for each unique set of nodes, edges
or element faces assigned to a nodeset or sideset. The default is to use any nodeset and sideset information available in
the file. Figure 2 shows an example of how nodeset and sideset information might be used to generate geometry.

Figure 2. Example of geometry created from mesh entities assigned to nodesets (3) and sidesets (1 and 2).

Importing Exodus II Files

673

Upon import, nodesets and sidesets are automatically created with the appropriate geometric entities assigned to them.
The IDs of the new geometric entities, if generated from boundary condition data, will be the same as the nodeset and
sideset IDs. Where doing so would conflict with existing geometric IDs, the program will automatically select the next
available ID.

Feature Angle

Use this option to specify the angle at which surfaces will be split by a curve or where curves will be split by a vertex. 180
degrees will generate a surface for every element face, while 0 degrees will define a single, unbroken surface from the
shell of the mesh. The default angle is 135 degrees.

Figure 3. Example use of Feature Angle

Figure 3 shows an example of the use of different feature angles. On the left is a simple two-element hex mesh.
Specifying a feature angle greater than 120 degrees would create the geometry in the center image. Using a feature angle
less than 120 degrees and greater than 90 degrees would define the geometry on the right.

Smooth Curves and Surfaces

This argument allows the option of using a higher-order approximation of the surface when remeshing/refining the
resulting geometry. Default is to use the original mesh faces themselves as the curve and surface geometry
representation. If the finite element model to be imported is to represent geometry with curved surfaces, it may be useful
to select this option. If selected, it will use a 4th order B-Spline approximation to the surface [Walton,96]. Figure 4 shows
the effect of the smooth curve and surface option.

Figure 4. Effect of Smooth Curve and Surface Option for remeshing of mesh-based geometry

Cubit 13.2 User Documentation

674

In this figure the top image is the original finite element mesh imported into CUBIT. In this example both models have
been remeshed with the same element size. The difference is that the figure on the right uses the smooth curve and
surface option. While this option can improve the surface representation, it should be noted that memory requirements
and meshing times can sometimes be affected.

If importing the Exodus II file using the command line, other options for surface representations are also available.

[LINEAR|Gradient|Quadratic|Spline]

The method used from the GUI is either Linear or Spline. The Gradient and Quadratic methods are still somewhat
experimental and may not be as general purpose as the Spline representation.

Apply Deformations

This option permits the user to import time-dependant deformation information from the Exodus file. For this option, any
vector data in the Exodus II file is assumed to be deformation information. If selected, deformations will be applied to the
nodes upon import. Enter a specific time step value, integer step, or the last time available in the file. If time-dependant
data is available in the Exodus II file, selecting the down arrow in the edit field will display the available time steps in the
file. Default time is the last time step.

Figure 5. Example of remeshing of a deformed finite element mesh

Figure 5 shows an example of using Mesh-Based Geometry for a large deformation analysis. In this case, the analysis
[Attaway et. al.,98] began and continued until mesh quality became unacceptable. At that point, the mesh was imported
into CUBIT and geometry re-created from the computed deformations. The finite element mesh could then be removed,
remeshed or improved and written back to an Exodus II file. After remapping [Wellman,99] the appropriate analysis
variables back to the mesh, the analysis could then be restarted. This process was repeated multiple times until the
desired results were achieved.

Note: Care should be taken when using large deformations, as inverted elements (negative Jacobians) may produce
unpredictable results with the resulting geometric representation.

Also available is an optional scale factor. This applies the indicated scale to all deformations. Default is 1.0.

Merge

This option allows the user to either merge or not merge the resulting volumes. The default option is to merge adjacent
volumes. This results in non-manifold topology, where neighboring volumes share common surfaces. Using the no_merge
option, adjacent volumes will generate distinct/separate surfaces.

Merge Nodes

The merge_nodes option will allow the user to specify a different tolerance for merging nodes on import. The default
value is 1e-6.

Note: Care should be taken when setting import merge tolerances. Setting a tolerance too low will not merge adjacent
nodes. Setting the tolerance too high can produce undesirable results, and severely tangle the mesh.

Importing Exodus II Files

675

Export Facets

[export_facets <1|2|3>]

This is primarily a debug option available only from the command line. This option will export the shell of the Exodus mesh
to an ASCII file in the form of facets. The resulting file can be imported to Cubit using the "Import Facets" command.
Export options: 1 = export only the exterior facets to file "facets.shell"; 2 = export only the interior facets between element
blocks to file "facets.inter"; 3 = export all boundary facets to file "facets.all".

Importing a Preview Mesh

A mesh may be imported without associating the nodes and elements to geometry by using the Preview option. This may
be useful, if importing the mesh is unsuccessful with the current geometry representation. In most cases this option is
used only to preview the mesh in order to determine where geometry associatively problems may exist. Support for
meshes without geometry associativity is limited to List, Draw and view navigation commands.

When a mesh is imported with the Preview option, the imported mesh entities are placed in a group called
free_elements. To see if the elements match the geometry, the user may issue the following command:

draw free_elements add

To delete the unassociated mesh elements, use the following command:

delete mesh preview

Note that the Import Mesh Preview is a legacy command that has been replaced in functionality by the Import Mesh
No_Geom command, described above.

677

Importing Abaqus Files

The command to import a mesh from an Abaqus format file is:

Import Abaqus [Mesh Geometry] '<input_filename>' [Feature Angle <angle>] [Nobcs]

Including the keyword Mesh Geometry will instruct CUBIT to create mesh-based geometry. This will provide the user with
the ability to remesh geometric entities. If the user does not import with the Mesh Geometry flag, he will have to tell CUBIT
to draw the mesh after the import is done in order to view it.

The Feature Angle is used when building the surface topology to determine when to split a surface into two surfaces. If
the angle between two neighboring element normals is less than Feature Angle, then the two elements will be placed on
separate surfaces. If the keyword Feature Angle is not supplied, the default 135 degrees is used. For a description of
importing mesh geometry see Importing Exodus II Files.

The keyword nobcs can be included if boundary conditions are not to be imported.

The Abaqus importer can import the following Abaqus file formats: flat file, part-independent, and part-dependent.

It should be noted that CUBIT sometimes cannot successfully generate mesh-based geometry for complex models. If this
occurs, import the mesh without the Mesh Geometry flag, and draw the mesh to view it.

To list Abaqus cards supported by Cubit:

List Abaqus Import Cards

This command will list out all supported Abaqus cards that CUBIT can interpret.

Table 1. Supported Element Types

 1st Order 2nd Order

Triangle
S3

CAX3
CPE3

STRI65
CAX6
CPE6

Quadrilateral
S4

CAX4
CPE4

S8
CAX8
CPE8

Tetrahedron C3D4 C3D10

Hexahedron C3D8 C3D20

Line Element

B21
B31

T2D2
T3D2

SPRINGA
SPRING1
SPRING2

B22
B32

T2D3
T3D3

See http://www.simulia.com/ for more information on the ABAQUS file format.

http://www.simulia.com/

679

Importing I-DEAS Files

The command to import a mesh from an I-DEAS format file is:

Import Ideas [Mesh Geometry] '<input_filename>' [Feature Angle <angle>] [Nobcs]

Including the keyword Mesh Geometry will instruct CUBIT to create mesh-based geometry. This will provide the user with
the ability to remesh geometric entities. If the user does not import with the Mesh Geometry flag, he will have to tell CUBIT
to draw the mesh after the import is done in order to view it.

The Feature Angle is used when building the surface topology to determine when to split a surface into two surfaces. If
the angle between two neighboring element normals is less than Feature Angle, then the two elements will be placed on
separate surfaces. If the keyword Feature Angle is not supplied, the default 135 degrees is used. For a description of
importing mesh geometry see Importing Exodus II Files.

The keyword nobcs can be included if boundary conditions are not to be imported.

It should be noted that CUBIT sometimes cannot successfully generate mesh-based geometry for complex models. If this
occurs, import the mesh without the Mesh Geometry flag, and draw the mesh to view it.

To see more information on the I-DEAS file format, visit their website at www.siemens.com.

http://www.siemens.com/

681

Importing Patran Files

The command to import a mesh from an Patran format file is:

Import Patran '<neutral_filename>'

Import Patran Mesh Geometry '<neutral_filename>' [Use [Feature_Angle <angle>]
[Linear|Gradient|Quadratic|Spline]]

See Importing Exodus II Files for a description of the import options.

For more information on the Patran file format, see their website at www.mscsoftware.com.

http://www.mscsoftware.com/

683

Importing 2D Exodus Files

CUBIT has a limited capability to create ACIS Geometry from 2D ExodusII finite element mesh files. (For a more general
capability, see the Import Mesh Geometry command, which will create Mesh-Based Geometry).

To import a 2D Exodus II file and create ACIS geometry, the following command can be used:

Import Free Mesh '<filename>' {Time <t> | Step <step#> | Last}

CUBIT can create ACIS geometry from 2D Exodus II data files (4, 8, or 9 node QUAD or SHELL element types) that do
not have enclosed voids (holes surrounded by mesh) and which were originally generated with CUBIT and exported to
ExodusII with the Nodeset Associativity option set to on. The Nodeset Associativity command records the topology of the
geometry into special nodesets which allow CUBIT to reconstruct a new solid model from the mesh even after it has been
deformed. The new solid model of the deformed geometry can be remeshed with standard techniques or meshed with a
sizing function that can also be imported into CUBIT from the same ExodusII file. CUBIT's implementation of the paving
and triadvance algorithms can generate a mesh following a sizing function to capture a gradient of any variable (element
or nodal) present in the ExodusII file.

In order for this feature to be effective, the following commands must be issued when the mesh is exported and later
imported:

nodeset associativity on

set associativity complete on

The first command ensures that the geometry will be correctly recovered from the mesh, while the second ensures that
boundary condition and material IDs will be recovered.

685

Mesh Deletion

Meshing a complex model often involves iteration between setting mesh parameters, meshing, and checking mesh
quality. This often requires removing mesh, for only an entity or for an entity and all its lower order geometry, or
sometimes for the entire model.

The command to remove all existing mesh entities from the model is:

Delete Mesh

The command for deleting mesh on a specific entity is:

Delete Mesh {geom_list} [Propagate]

These commands automatically cause deletion of mesh on higher dimensional entities owning the target geometry.

If the Propagate keyword is used, mesh on lower order entities is deleted as well, but only if that mesh is not used by
another higher order entity. For example, if two surfaces (surfaces 1 and 2) sharing a single curve are meshed, and the
command "delete mesh surface 1 propagate" is entered, the mesh on surface 1 is deleted, as well as the mesh on all the
curves bounding surface 1 except the curve shared by surface 2. In some cases, the capability to delete individual mesh
faces on a surface is needed. Deleting a mesh face involves closing a face by merging two mesh nodes indicated in the
input. The syntax for this command is:

Delete Face <face_id> Node <node_id> [Node <diagonal_node_id>]

This command is provided primarily for developers' use, but also provides the user fine control over surface meshes. At
the present time, this command works only with faces appearing on geometric surfaces and should be used before any
hex meshing is performed on any volume containing the face to be deleted.

Automatic Mesh Deletion

Cubit will automatically delete the mesh from a geometry that is about to be modified by a geometry modification
command. To change this behavior, so that Cubit will issue an error instead of automatically deleting the mesh, use the
following command.

Set Mesh Autodelete [ON|Off]

687

Free Meshes

A free mesh is a mesh that is not associated with any underlying geometric entities. A free mesh contains only mesh
elements (hexahedrons, triangles, edges, nodes, etc), and not volumes, surfaces, etc. Since there is no underlying
geometry, operations on free meshes are limited. The following operations can be performed on free meshes in some
capacity:

 Creating a free mesh

 Creating mesh-based geometry to fit a free mesh

 Mesh merging

 Mesh transformations

 Mesh smoothing

 Mesh quality operations

 Mesh refinement

 Cleaning up a free mesh

 Assigning boundary conditions

 Skinning a free mesh

 Mesh deletion

 Bottom-up element creation

 Exporting a free mesh

Creating a free mesh

A free mesh can be created in three ways.

1. Importing a mesh into Cubit using the Import Mesh [No_Geom] command. This option is discussed in detail in
Importing Exodus II Files.

2. Disassociating an existing mesh from its geometry
3. Creating a mesh with the geometry-tolerant mesh scheme

Disassociating a mesh from its geometry

The command to disassociate a mesh from existing geometry is:

Disassociate Mesh [From] {Volume|Surface|Curve|Vertex} <id_range>

For example:

brick x 10
mesh volume all
disassociate mesh from volume 1
delete volume 1

When a mesh is disassociated from its geometry, a group called 'disassociate elements' is created to contain the free
mesh.

Creating Mesh-Based Geometry to fit a Free Mesh

It is possible to create underlying mesh-based geometry to own a free mesh. It is similar in functionality to the Import
Mesh Geometry command, but it does not not require the extra import/export step. So for example, a user would be able
to read in a free mesh, fix any mesh problems, and then create the mesh-based geometry without having to write the
mesh to a file first. The command syntax is:

Create Mesh Geometry {Hex|Tet|Face|Tri|Block} <range> [Feature_Angle <angle=135>] [Keep]

The command also applies to any subset of the mesh. For example, you can create mesh geometry for a group of hexes
or element blocks.

Cubit 13.2 User Documentation

688

If the keep option is specified, the mesh will be duplicated so you will have two copies of the mesh: The original mesh and
the new mesh that is owned by the new MBG geometry. If the keep option is not specified, the existing mesh will be
reused, and duplicate elements will not be created. Elements will now be owned by the new MBG geometry. The
command will check for mesh ownership and will issue warning and enable the keep option if the mesh is owned. The
keep option is not specified by default.

Also note that any genesis entites defined on the free mesh will be maintained with this option. The genesis entities will
not however be transfered to the new MBG entities and will not be used as criteria for building the new MBG geometry.
Other options such as creating a spline representation and building geometry from genesis entities are not supported in
this command. Exporting the free mesh and reimporting using "import mesh geometry" may be an option if these features
are desired.

Merging a free mesh

To merge two free meshes, the equivalence command may be used. The command syntax is:

Equivalence Node <range> [Tolerance <value>]

All nodes in the given range that are within the specified tolerance will be merged. For example:

br x 10
volume 1 copy move x 10
mesh volume all
disassociate mesh from volume 1 2
delete volume 1 2
equivalence node all tolerance 0.05
merges all nodes that are within 0.05 of each other

Free Mesh Transformation Operations

Mesh transformations for free meshes are achieved through the use of the group transformation commands, given in
Basic Group Operations. All members of a free mesh are automatically assigned to a group. These groups can then be
modified using group operations. The following command sequence illustrates how transformations might be applied to a
free mesh.

brick x 10
mesh volume 1
disassociate mesh from volume 1
delete volume 1
group disassociated_elements move x 10
group disassociated_elements rotate 15 about x
group disassociated_elements scale 0.25
group disassociated_elements reflect 1 1 0
group 'node_group' add node 1 to 121
group node_group move z 5
##The moved nodes do not also move the attached geometry, as one might expect.

If a group is composed of mesh entities, these commands will only operate on the nodes in the group. All nodes of the
group will be moved, scaled, rotated, or reflected as specified. If there are no nodes in the group, Cubit will return an error.
Including all nodes in the group will transform the whole model. Including only a subset of nodes will transform those
nodes and their enclosed elements, but it will not transform the whole mesh.

Disassociated mesh elements cannot be copied using the Group copy commands. To create a copy they must be
exported and reimported. Alternatively, they can be associated with mesh-based geometry, and then copied using the
typical copy commands.

Extruding Mesh Elements

Mesh elements can be extruded to create new elements from existing nodes, edges, faces or triangles. A direction or
curve can be used to specify how the elements are created. The distance parameter is optional and if not specified the
length of the given direction will be used instead. Specifying a value for the layers option determines how many elements
will be created in the given distance. Twist can also be specified and requires an angle of twist and a twist axis.

Create Element Extrude {Node|Edge|Face|Tri} <element_list> {Direction <options>|Along Curve <curve_list>} [Distance
<value>] [Layers <num_layers] [Twist <angle> Axis <axis_options>]

Free Meshes

689

#Extrude a face in a given direction:
create node location 0 0 0
create node location 1 0 0
create node location 1 1 0
create node location 0 1 0
create face node 1 to 4
create element extrude face 1 direction 0 0 1 distance 3 layers 3
create element extrude face 1 direction 0 0 1 distance 3 layers 3 twist 90 axis direction 0 0 1 origin 0 0 0

#Sweep face along curve
create node location 0 0 0
create node location 1 0 0
create node location 1 1 0
create node location 0 1 0
create face node 1 to 4
create vertex location position 0 0 0
create vertex location position 0 .2 1
create vertex location position 0 1 2
create vertex location position 0 3 2
create vertex location position 0 4 1
create vertex location position 0 5 0
create curve spline vertex 1 2 3 4 5
create element extrude face 1 layers 5 along curve 1

Figure 1. Extruding mesh elements along a spline

Offsetting Mesh Elements

Faces and triangle elements can be used to create hexahedral and wedge elements from an offset command. The default
offest direction is normal to the selected face. The Oppposite_normal option will use the reverse direction. The layers
parameter determines how many elements will be created in the given direction.

Create Element Offset {Face|Tri} <element_list> [Normal_to|Opposite_normal] {Distance <value>]
[Layers <num_layers>]

Cubit 13.2 User Documentation

690

#Create wedge and hex elements from face and tri elements via offset
create node location 0 0 0
create node location 1 0 0
create node location 1 1 0
create node location 0 1 0
create node location 2 0 1
create node location 2 1 1
create node location 1 2 0
create face node 1 to 4 create face node 3 2 5 6
create tri node 7 4 3
create tri node 7 3 6
create element offset face all tri all distance 3 layers 3 opposite_normal

Revolving Mesh Elements

Elements can be created by revolving an existing element around a given axis. The Attempt_hex_fix parameter will try to
fix any poorly formed hex elements by collapsing them into wedge elements. Angle determines the amount of rotation
around the axis. The Layers option determines how many elements will be created in the given rotation.

Create Element Revolve {Edge|Face|Tri} <element_list> Axis <axis_options> Angle <angle> [Layers
<num_layers>] [Attemp_hex_fix]

#Revolve 2 faces around the Y-axis and collapse inner hexes to wedges
create node location 0 0 0
create node location 1 0 0
create node location 1 1 0
create node location 0 1 0
create node location 2 0 0
create node location 2 1 0
create face node 1 2 3 4
create face node 2 3 5 6
create element revolve face 1 2 axis direction 0 1 0 origin 0 0 0 angle 180 layers 4 attempt_hex_fix

Figure 2. Revolving free mesh elements to create hex and wedge elements

Free Meshes

691

Smoothing a free mesh

Interior nodes can be smoothed using commands such as smooth hex all, or smooth tet all in block 100. These
commands will smooth only the interior node on the elements used in the command. The nodes on the boundary will
remain unchanged. To smooth nodes on a boundary, the target smoothing option can be used. Targeted smoothing
allows the user to smooth a group of mesh elements to a surface or curve that is not their owner. Targeted smoothing is
discussed under Mesh Smoothing. The following sequence of commands illustrate the capability of smoothing a free
mesh to a target surface.

sphere rad 25
webcut vol 1 plane xplane offset 18
delete vol 2
webcut volume 1 plane yplane offset 8
webcut volume 1 plane yplane offset -8
delete vol 1 3
surf 16 copy
delete vol 4
surf 18 scheme pave
surf 18 size 2
mesh surf 18
disassociate mesh surf 18 ##Mesh and geometry overlap
refine face 1 radius 3
set developer on ## Smoothing free mesh is a developer command
smooth face all scheme laplacian
##Smoothed mesh is away from surface
smooth face all scheme laplacian target surface 18
##Smoothed mesh is aligned with surface

Figure 3. Smoothing without a target (above) and smoothing to a target surface (below).

Mesh quality on a free mesh

The mesh quality checks for a free mesh are the same as for other geometry-based meshes. The difference is in how you
specify elements in the command. Instead of specifying volumes or surfaces you would specify groups of hexes, faces,
tris, or tets. Examples are given below:

quality hex all
quality face all scaled jacobian
quality tet 1 to 100 draw mesh

Cubit 13.2 User Documentation

692

Mesh refinement on a free mesh

Refinement for a free mesh is limited to refinement of mesh elements. Refinement may be accomplished by specifying
groups of mesh elements which to refine using the regular refinement options. For boundary elements, the refinement
scheme will use averaging methods to determine node placement, in the absence of a boundary geometry to define node
placement.

Cleaning up a free mesh

A free tet mesh may be cleaned up using the Cleanup Tet command. For example

cleanup tet all
#cleans up all tets
cleanup tet 1 to 1000
#cleans up all tets in the range [1,1000]

It is best to specify contiguous sets of elements for this command.

Assigning boundary conditions

Assigning boundary conditions on free meshes can be accomplished by explicitly specifying mesh elements, by creating a
sideset or block from the skin of a group of elements, or by creating groups based on feature angle using the seed
method. Once the group is created it is easy to assign it to a nodeset or sideset.

Cubit will respect block, nodeset, and sideset data that is associated with an imported free mesh, or disassociated mesh.
The following command sequence illustrates how the group seed operation could be used for assigning boundary
conditions on free meshes.

##Creating blocks, nodesets and sidesets on free meshes
cylinder radius 3 z 12
volume 1 size 0.5
mesh volume 1
disassociate mesh from volume 1
delete volume 1
group 'mygroup1' add seed face 752 feature_angle 45
##Groups all faces on the cylindrical surface
group 'mygroup2' add seed face 752 feature_angle 45 divergence
##Groups only faces within 45 degrees of seed face
sideset 1 group mygroup1
sideset 2 group mygroup2
block 1 hex all
draw sideset 1
draw sideset 2
draw block 1

Free Meshes

693

Figure 4. Grouping faces on free meshes using the seed method. The feature angle method is used on the left
with a feature angle of 45 degrees. On the right is the result if using the divergence method.

Even though boundary conditions can be defined directly only on geometry entities, these geometry-based BCs will be
maintained on the free mesh following the disassociate command. The following command line sequence illustrates this
capability.

##Respecting blocks, nodesets and sidesets in mesh elements after disassociation
brick x 10
mesh vol 1
sideset 1 surface 1
nodeset 1 curve 1
block 1 volume 1
disassociate mesh from volume 1
draw sideset 1
draw nodeset 1
draw block 1

Skinning a free mesh

The skin command takes a list of mesh elements and returns the triangles and faces on the boundary of that group. The
group of elements returned from the command can be assigned to either a group, sideset, or block. Free meshes can be
skinned by specifying either a list of hexahedra, a list of tetrahedra, or a list of blocks.

Deleting free mesh elements

Typically meshes are deleted by specifying owning geometry. For free meshes, the meshes cannot be deleted in this
fashion. Instead, the mesh may be deleted using the Delete mesh command. The syntax is:

Delete Mesh

This command will delete all mesh entities in the entire model. To specify groups of elements for deletion, you can use the
individual deletion commands. The command to delete a group of free mesh elements is:

Delete {Node|Hex|Tet|Face|Tri} <id_range> [No_propagate]

Cubit 13.2 User Documentation

694

When deleting elements, the default behavior will be that the child mesh entities will be deleted when they become
orphaned. For example, when a hex is deleted, if its faces, edges and vertices are no longer used by adjacent hex
elements, then they will also be deleted. The no_propagate option will leave any child mesh entities regardless if they
become orphaned.

Bottom-up element creation

Bottom-up mesh element creation methods are available for free meshes. The difference between element creation
methods for free meshes versus associated meshes is that the free meshes commands do not have a command option to
associate the elements with an owning body. Otherwise the commands are identical to mesh element creation commands
for associated meshes. The command syntax for free meshes is:

Create Node <x> <y> <z>

Create {Hex|Tet|Tri|Face|Edge} Node <id_range>

Exporting free meshes

Free meshes can be exported as ExodusII files. All elements belonging to any block are exported. Any elements not
belonging to a block will not be exported (i.e. Cubit will not assign default blocks).

695

Skinning a Mesh

The Skin command takes a range of hexahedra, tetrahedra, blocks, or volumes and generates a collection of triangles or
quadrilaterals on the exterior of the volumetric elements. This is the skin mesh.

Skin {Hex|Tet|Block|Volume} <range> [Make {Block|Sideset [<id>] |Group [<name>|<id>]}

Skin {Hex|Tet|Block|Volume} <range> {Add|Replace} {Block|Sideset [<id>] |Group [<name>|<id>]}

The first command form has optional arguments. If the Make option and its arguments are present, then the specified
object (block, sideset or group) receives the skin mesh. The command fails if an object with the optional identifier already
exists. If the object identifier is omitted, the identifier is set to the next object of that type. The skin mesh is stored in the
next available sideset if the Make option is missing.

The second command form has two options, Add and Replace. Each option has a required, associated identifier. If the
identifier is missing or invalid, the command fails. The Add option appends the skin mesh to the object. The Replace
option removes any existing mesh from the object before adding the skin mesh.

The skin mesh will respect the merged volumes. If two adjacent volumes are merged, the skin mesh will not include the
merged surface. If the volumes are not merged, each volume will generate a separate skin surface. If volumes are not
merged, they are treated separately. The skin command will also respect any number of interior voids. All surface
elements will be oriented forward with respect to the originating volumes.

The primary use for the skin command is to generate surface meshes of quads or tris for sidesets and remeshing.

697

Element Block Specification

 Creating Blocks

 Assigning a Name or Description to an Element Block

 Defining the Element Type

 Default Element Blocks

 Duplicate Block Elements

 Assigning Attributes

 Displaying Blocks

 Deleting Blocks

 Automatically Assigning Mesh Edges to a Block (Rebar)

 Creating Spider Blocks

 Creating Beam Blocks

 Creating Spring Blocks

 2d Elements

 Mixed Element Output

 Adding Materials to a Block

Element blocks are the method CUBIT uses to group related sets of elements into a single entity. Each element in an
element block must have the same basic and specific element type.

The preferred method for defining blocks is to use geometric entities such as volumes, surfaces or curves. Blocks can
also be defined using mesh entities. If a block is defined at a geometric entity, each of the elements owned by the
geometry are automatically assigned to the block. Deleting or remeshing the geometry automatically changes the set of
elements grouped into the block. If mesh entities are used to specify a block, deleting the mesh will also delete the
elements from the block.

Some important notes regarding Element Blocks are as follows:

 Multiple volumes, surfaces, and curves can be contained in a single element block

 A volume, surface, or curve can only be in one element block

 Element Block id's are arbitrary and user-defined. They do not need to be in any contiguous sequence of
integers.

 Element Blocks can be assigned a single floating point number, referred to as the block Attribute; this number is
used to represent the length or thickness of Bar and Shell elements, respectively. The attribute defaults to 1.0 if
not specified.

Creating Element Blocks

Element blocks are defined with the following Block commands.

Block <block_id> {Vertex | Curve | Surface | Volume} <range> [Remove]

Block <block_id> {Hex|Tet|Pyramid|Face|Tri|Edge|Node} <range> [Remove]

Block <block_id> Group <range> [Remove]

The first command defines the block based on a list of geometric entities, while the second uses specific lists of mesh
entities. Since a block can only contain a single element type, usually entities of the same type are defined on the same
block. The third option provides for assigning groups of entities to a single block. This is useful, for example, when
several entities of the same type can be grouped together. The Block Group command simplifies the specification of the
block.

By using the Remove argument to the block command, the specified geometry or mesh entity can be removed from the
block definition.

Cubit 13.2 User Documentation

698

Assigning a Name or Description to an Element Block

The following commands can be used to assign a name or description to an element block. Assigning a name to a block
can be more intuitive than using traditional integer IDs, and the name and description are preserved in DART metadata-
enabled applications (like SIMBA). This command is also available for nodesets and sidesets.

Block<ids> Name "<new_name>"

Block<ids> Description "<description>"

Defining the Element Type

Each block must have a specific element type associated with it. To assign an element type to a block, use the following
command:

Block <block_id_range> Element Type <type>

Available element types are defined by the Exodus II file format specification (Schoof, 95). CUBIT supports the following
element types:

Nodes: SPHERE SPRING

Curves: BAR BAR2 BAR3 BEAM BEAM2 BEAM3 TRUSS TRUSS2 TRUSS3 SPRING

Surfaces: QUAD QUAD4 QUAD5 QUAD8 QUAD9 SHELL SHELL4 SHELL8 SHELL9 HEXSHELL
TRI TRI3 TRI6 TRI7 TRISHELL TRISHELL3 TRISHELL6 TRISHELL7

Volumes: HEX HEX8 HEX9 HEX20 HEX27 PYRAMID TETRA TETRA4 TETRA8 TETRA10
TETRA14

If the element type is not assigned for an element block, it will be assigned a default type depending on which type of
geometry entity is contained in the block. The default values used for element type are:

Volume: 8-node hexahedral elements (HEX8) will be generated for hex meshes. TETRA4 will be
generated for tet meshes.

Surface: 4-node shell elements (SHELL4) will be generated for quad meshes and TRISHELL3 for tri
meshes.

Curve: 2-node bar elements (BAR2) will be generated.

Node: 1-node elements (SPHERE) will be generated.

Higher order nodes are moved to curved geometry by default. To change this, use the following command:

set Node Constraint [ON|off]

On means higher order nodes snap to curved geometry. Off means higher order nodes are placed at the average location
of the element nodes: for edges, this means on the line containing the edge; for 2d elements, this usually means on the
plane containing the element. Several examples of specifying various types of element blocks are given in the Appendix.

Default Element Blocks

When exporting an ExodusII file, if the user has not specified any Element Blocks, by default element blocks will be
written for any meshed volumes. This default behavior can be changed, to write surface, volume, or no meshes by default.
This option can be set using the command

Set Default Block [ON|off|Volume|Surface]

Default behavior, ON, is for the blocks to automatically be written based on their owning geometry. When the OFF setting
is used, only the mesh contained in blocks created by the user will be exported. Mesh not in an element block at export
time, will not be exported. The export will still succeed and no error will be thrown. If Volume is specified, only elements
contained in volumes will have default blocks specified. Similarly, the Surface argument indicates that only surfaces
containing elements will use default blocks.

When default blocks are used, the IDs for the resulting blocks will be defined as follows based upon the type of geometry:

Element Block Specification

699

Volume: The default block ID will be set to the Volume ID

Surface: The block ID will be set to 0

Curve: The block ID will be set to

Duplicate Block Elements

By default, any given element cannot be included in more than one block. However, when using the following command,
an element may be included in more than one block. Please note, since material properties are assigned to blocks, using
this command to allow duplicate block elements may result in an element being assigned to multiple materials.

Set Duplicate Block Elements {on|OFF}

Assigning Attributes to Blocks

It may be necessary to associate attributes with a specific element block. Attributes are generally integer or floating point
values that represent some physical property in the region occupied by the block, such as material properties or shell
thickness. To assign an attribute to an element block, use the following command:

Block <block_id_range> Attribute <value>

The default number of attributes of an element block is dependent on the element type of the element block. Except for
the element blocks of the element types below, all element blocks contain zero attributes by default.

Element Type Number Default Attributes

SPHERE 1

BAR 3

BEAM 7

TRUSS 1

SPRING 1

SHELL 1

TRISHELL 1

To assign more attributes than the number of default attributes use the following command:

Block <id_range> Attribute Count <1-10>

CUBIT will store up to 10 attributes per block. Specify the maximum number of attributes to be stored on the block with
this command. Once this command has been executed, individual attributes may be set using the following command:

Block <id_range> Attribute Index <index> <value>

The index is an integer from 1 to the maximum count specified in the Block Attribute Count command. The value may be
any valid floating point number.

Displaying Element Blocks

Blocks can be viewed individually with CUBIT by employing the following command:

Cubit 13.2 User Documentation

700

Draw Block <block_id_range> [Color <color_spec>] [add]

Block colors can also be changed using the following command:

Color Block <block_id_range> {color|Default}

Deleting Element Blocks

All Nodesets, Sidesets and Blocks may be deleted from the model using the following command:

Reset Genesis

To remove only Blocks, the following may be used:

Reset Block

To remove a specific block, use:

Delete Block <block_id_range>

Automatically Assigning Mesh Edges to a Block (Rebar)

After a mesh has been defined within a volume, it may be useful to use the existing mesh edges as the basis for an
element block. Such an element block might be composed of bars or truss type elements that might propagate through a
solid medium such as rebar placed in reinforced concrete. Although the Block <id> Edge <range> command could be
used for this task, it would prove extremely tedious defining the individual edges to add to the block. To make this process
easier, the following command can be used:

Rebar Start <x> <y> <z> Direction <x> <y> <z> [Length <value>] Block <id> [Element Type
{bar|bar2|bar3|BEAM|beam2|beam3|truss|truss2|truss3}]

The Rebar command allows the user to specify a starting location for a set of edges and an initial direction. The program
will find the closest existing node in the mesh to Start <x> <y> <z> and begin propagating through the mesh in the
specified Direction <x> <y> <z>, adding edges to the block as it propagates through the mesh. The edge that is attached
to the last node and is within a fixed 30 degrees of the specified direction is added to the block. The Propagation of the
edges continues until either the optional Length value is reached or an edge does not meet the Direction criteria. Also
required with this command is a block ID. An Element Type can also be specified.

Similarly, you can use the following command which will use the 30 degree cone described above to gather edges from a
surface into a single block using the Cartesian x, y, and/or z vectors.

Rebar Surface <range> [x] [y] [z] Block <id> [Element Type
{bar|bar2|bar3|BEAM|beam2|beam3|truss|truss2|truss3}] [Propagate]

Diagonal and Orthogonal Rebar Blocks

Another method for generating rebar blocks include the Diagonal/Orthogonal option. This command can only be used on
surfaces that have been meshed with the mapping scheme. This command will create a block of edges from the mapped
mesh by starting in one corner and gathering edges orthogonally, or creating new edges diagonally based on the option
specified, using the parametric coordinate system dictated by the mapping scheme on the surface. The spacing option
dictates how many edges are skipped over before starting the next set of rebar edges.

Rebar Surface <range> {Diagonal|Orthogonal} [Spacing <int>] [Block <id> [Element Type
{bar|bar2|bar3|BEAM|beam2|beam3|truss}]

Element Block Specification

701

CUBIT> rebar surf 1 diagonal spacing 2 block 2

CUBIT> rebar surf 1 orthogonal spacing 3 block 3

Specifying a set of nodes

A final rebar option allows the user to create or group rebar edges into a specified block using nodes. Edges are created,
or gathered, using the ordered list of nodes specified in the command.

Rebar Node <range> [Target Block <id>] [Element Type {bar|bar2|bar3|BEAM|beam2|beam3|truss}]

Cubit 13.2 User Documentation

702

CUBIT> rebar node 113 105 97 89 81 73 65 57 49 target block 1

A related command for creating curve geometry directly from mesh edges is the Create Curve from Mesh command. See
Curve creation for more details.

Creating Spider Blocks

The block creation tool also allows the user to create a special block of bar elements that can be used as part of the
boundary specification. This command creates beam type elements directly without creating any underlying geometry.

The command for creating this type of block is:

Block <id> Joint {Vertex <id> | Node <id> }Spider {Surface|Curve|VertexFace|Tri|Node} <range>
[preview] [Element Type {bar|bar2|bar3|BEAM|beam2|beam3|truss|truss2|truss3}]

The joint node is the starting location of the bar elements and the spider location is the terminating location of the bar
elements. You can specify the terminating location as either a node, vertex, geometric surface or the face of a mesh
entity. Some analysis codes refer to these bar elements as tied contacts or rigid bar elements. They can be used to tie
models together or to enforce specific kinds of boundary conditions. For example, in the figure below a block of beam
elements is used to tie a node at the center of the circle to every node on the edge of the circle. This arrangement can be
used to enforce circularity but still allow for displacement of the entire circle. This may occur if there are additional
structures above the cylinder that are being excluded from the current finite element model. The beam elements were
created by a series of commands of the form

block 10 joint node 1 spider node 2

The preview option can be included to draw the location of the beam blocks on the screen without actually executing the
command.

When specifying vertex ids, please know the bar elements will be tied to the nodes associated with the vertex, not the
vertex itself.

Element Block Specification

703

Figure 1. Beam elements created with the Spider command

Creating Beam Blocks

Properties for blocks that are beam types (beam, beam2, beam3) have additional commands to define a cross-sectional
area. The following command can be used to change the type of cross-sectional area of a beam block:

Block <id> beam_type {CIRCLE|box|rectangle|pipe|ibeam|general}

The dimensions are set by listing them after the keyword beam_dimensions:

Block <id> beam_dimensions <values>

The order in which the values need to be specified are described in the chart below.

If the solver used is to integrate over the section during the simulation, turn section_integration on using the following
command:

Block <id> section_integration {ON|off}

The beam normal vector is a vector normal to the plane of motion and tangent to the first bending axis. This vector can
be set using the following command:

Block <id> beam_normal <x><y><z>

Section Profile Order to Specify Dimensions

Circle Radius

Pipe Outer radius, wall thickness

Rectangle Width, height

Box
Total width, total height, thickness (right), thickness (top), thickness (left), thickness
(bottom)

Cubit 13.2 User Documentation

704

I-Beam
Distance to bending axis (from bottom), total height, bottom width, top width, thickness
(bottom), thickness (top), thickness (web)

General Area, Ixx, Ixy, Iyy, Polar moment of inertia (J)

Creating Spring Blocks

Spring blocks that will be exported to Abaqus can contain additional properties related to Abaqus springs. Users can
specify the spring type, stiffness, and DOFs associated with Abaqus springs. The spring type mapping to Abaqus
elements is in the following table.

CUBIT Block Spring Type Abaqus Element Type

Node_to_node SPRINGA

Node_to_node SPRING1

Node_to_ground_fixed SPRING2

The spring type is set using the spring_type keyword. In order to use this command, the block must already have an
element type of “SPRING.” If a DOF is associated with a spring, the spring_dof_1 keyword is used to specify the DOF
on the first node and spring_dof_2 is used to specify the DOF on the second node (SPRING2 only).

Block <id> [spring_type {NODE_TO_NODE | node_to_node_fixed_axis | node_to_ground}] [stiffness <k>]
[spring_dof_1 <n>] [spring_dof_2 <n>]

2D Elements

CUBIT is a 3d mesh generator by default. Element types, by default, are respectively TRISHELL and SHELL for triangle
and quad elements. If a 2d mesh is desired, blocks types must be explicitly set to TRI or QUAD.

Example:

create brick x 10
surface 1 scheme trimesh
mesh surface 1
block 1 surface 1
block 1 element type tri
export mesh "mymesh.exo"

Sideset 1 will be based on the TRI and QUAD elements in blocks 1 and 2, with the side numbering referring to the edges
of the triangles and quads.

Mixed Element Output

The Set Block Mixed Output command controls the behavior of blocks containing different element types when exporting
in a file format that doesn't support blocks with mixed element types. If EXPLICIT, only elements of a type matching the
element block will be exported. If DEGENERATE, all elements will be exported in one block, but tets and pyramids will be
written as degenerate hexes, and triangles will be written as degenerate quads. If OFFSET, then new element blocks will
be created separating the types. Hex and Quad blocks retain the block id, whereas tets, triangle, pyramids and wedges
get put into other blocks. The ids of the other blocks are based on the block id plus the offset for that type. Those values
are set using the offset commands.

Set Block Mixed Element Output { OffSet | Degenerate | Explicit }

Set Block Triangle Offset <value>

Set Block Tetrahedron Offset <value>

Set Block Pyramid Offset <value>

Element Block Specification

705

Adding Materials to a Block

Block <id> Material <id|'name'>

If a material is assigned to an element block, the material properties will be associated with the block's elements when the
mesh is exported. If no material is assigned to a block, a default material will be used during export.

707

Nodeset and Sideset Specification

 Creating Nodesets and Sidesets

 Assigning Names and Descriptions to Nodesets and Sidesets

 Grouping Faces on a Surface into a Sideset

 Deleting Nodesets and Sidesets

 Displaying Nodesets and Sidesets

 Nodeset Associativity Data

 Equation-Controlled Distribution Factors

 Nodesets/Sidesets/Blocks Behavior with Geometric Entity Copy

Boundary conditions such as constraints and loads are applied to the finite element model using nodesets or sidesets,
also known as Genesis entities. Rather than attempting to maintain specific boundary condition information, such as load,
temperature, constraint, etc., Genesis entities are the generic vehicle for the user to set up boundary conditions on the
model. Nodes, elements and element faces are instead grouped together and assigned unique IDs. Node, element and
face IDs assigned to Genesis entities can then be written to the Exodus II mesh file. Once imported to the intended
analysis application, the nodeset and sideset IDs can be appropriately interpreted as specific physical boundary
conditions.

The preferred method for creating Genesis entities is to assign vertices, curves, surfaces or volumes to a specific nodeset
or sideset ID. Any mesh entity owned by the geometric entity in a nodeset or sideset is automatically assigned to the
same nodeset or sideset. This allows greatest flexibility in generating and updating the finite element mesh. For example,
if a surface belongs to a specific sideset, remeshing the surface will automatically delete any old faces from the sideset
and add the faces of the new mesh.

In some cases, the geometric model does not provide enough resolution to define the desired boundary conditions. In this
case, the model may be partitioned using CUBIT's virtual geometry features. Where this may not be feasible, mesh
entities can also be added directly to the desired nodeset or sideset. Where individual mesh entities have been added to
nodesets or sidesets, deleting the mesh will also remove these elements from the Genesis entity. If the geometry is
remeshed, the new mesh entities must also be added once again to the nodesets or sidesets.

Nodesets can be created from groups of nodes categorized by their owning volumes, surfaces, curves or vertex.
Individual nodes may also be added to a nodeset. Nodes can belong to more than one nodeset.

Sidesets can be created from groups of element sides or faces categorized by their owning surfaces or curves or by their
individual face IDs. Element sides and faces can also belong to more than one sideset.

Creating Nodesets and Sidesets

Nodesets and Sidesets are created in CUBIT by assigning the appropriate geometry or mesh entities in the model to a
nodeset or sideset ID. The following commands can be used:

Nodeset <nodeset_id> {Curve | Surface | Volume | Vertex | Node} <range> [Remove]

Sideset <sideset_id> Group <id_range> [remove]

Sideset <sideset_id> {Curve|Surface|Edge|Face|Tri} <id_range> Remove

Sideset <sideset_id> Edge <id_range> [wrt {{Tri|Face} <id_range> | all }]

Sideset <sideset_id> Face <id_range> [wrt {Hex <id_range> | all}]

Sideset <sideset_id> Tri <id_range> [wrt {Tet <id_range> | all}]

Sideset <sideset_id> Surface <id_range> [wrt {{Volume|Surface} <id_range> | all}]
[FORWARD|Reverse|Both]

Sideset <sideset_id> Curve <id_range> [wrt {Surface <id_range> | all}]

Like element blocks, Nodesets and Sidesets are given arbitrary, user-defined ID numbers. If there are no user-defined
Nodesets or Sidesets, none are written to the Exodus II file.

Cubit 13.2 User Documentation

708

With Sidesets, direction is often important. For surfaces, the direction may be specified using the Forward, Reverse, or
Both options. The Forward option will write a sideset in relation to hexes in the surface's forward volume, which is the
volume that the surface's normal points away from. The Reverse option will write a sideset in relation to hexes in the
surface's reverse volume, which is the volume that the surface's normal points into. The Both option will allow sidesets to
be written in relation to the hexes that lie in volumes on both sides of the surface. The default is Forward. The user can
additionally specify the volume from which the hexes should be taken in relation to by using the wrt Volume option.

Direction is equally important for curves in Sidesets. The wrt Surface option allows the user to indicate which surface's
faces will be included in the Sideset. The wrt All option will include all faces attached to the curve. The default is wrt All.

Useful hint:

When creating nodesets and sidesets it is often userful to use the Extended Command Line Entity Specification. Here is
an example that creates a nodeset which includes all the nodes on the exterior of the geometry:

Create the geometry Create brick x 10 Create cylinder height 10 radius 2 Move volume 2 z 10 #
Merge the geometry Merge volume all # Mesh the geometry Mesh volume all # Create a nodeset that
includes only those nodes # located on the exterior of the geometry Nodeset 1 surface in volume all
with not is_merged

The following commands remove nodes from the nodeset that belong to a surface. Continuing from the previous example:

Remove surface 2 from the nodeset Nodeset 1 surface 2 remove # Remove nodes from the
nodeset # that belong to the curves that bound surface 2 Nodeset 1 node in curve in surface 2
remove

Nodes can also be added or removed based upon their coordinates. Here is an example that removes all the nodes with a
z coordinate equal to 15. Continuing from the previous example:

Remove the nodes with a z coordinate equal to 15 Nodeset 1 node in surface all with z_coord = 15
remove

Assigning Names and Descriptions to Nodesets and Sidesets

Nodesets and sidesets can be assigned names and descriptions. Using names and descriptions is often more intuitive
than using traditional integer IDs. When exporting a mesh as a DART artifact, names and descriptions are included in the
metadata, making them available to DART metadata-enabled applications such as SIMBA. To give a name or description
to nodeset or sideset, use one of the following commands:

{Nodeset|Sideset} <ids> Name "<new_name>"

{Nodeset|Sideset} <ids> Description "<description>"

This command can also be used to define names and descriptions for Element Blocks.

Grouping Faces on a Surface into a Sideset

A sideset can be created from a subset of the faces on a given surface by using one of the following commands:

SideSet <sideset_id> Surface <id_range> Patch Maximum <x> <y> <z> Minimum <x> <y> <z>

SideSet <sideset_id> Surface <id_range> Patch Center <x> <y> <z> Radius <value> [Filter] [Partition]

SideSet <sideset_id> Surface <id_range> Patch Center <x> <y> <z> Outer_radius <value> Inner_radius <value> [Filter]
[Partition]

SideSet <sideset_id> Surface <id_range> Patch Cylinder <axis_specification> Radius <rad> [Filter] [Partition]

SideSet <sideset_id> Surface <id_range> Patch Cylinder <axis_specification> Outer_radius <rad> Inner_radius <rad>
[Filter] [Partition]

These commands place only the faces meeting the specified criteria into the sideset.

 Using the maximum and minimum options will include all faces on the surface whose centroid falls within the
axis-aligned box defined by the maximum and minimum points.

Nodeset and Sideset Specification

709

 Using the center and radius options will include all faces on the surface whose centroid falls within the sphere
defined by center and radius.

 Using the center, outer_radius, and inner_radius options will include all faces on the surface whose centroid
falls within the sphere defined by center and outer_radius, but excluding those faces whose centroid falls within
the sphere defined by center and inner_radius. In other words, a face will be included if the distance between
the face and the center point is between inner_radius and outer_radius.

 Using the cylinder option will include all faces whose centroid falls within a cylinder of infinite length with the
given axis and radius. The axis is specified as described in Specifying an Axis.

 Using the optional inner_radius will exclude those faces whose centroid is closer to the axis than the specified
inner_radius.

Normally, these commands place the individual elements into the sideset. If the mesh on the surface is deleted, the
elements will be removed from the sideset. If the surface is then remeshed, new elements will NOT automatically be
added to the sideset. This is usually the intended behavior.

If the filter option is included, only a single connected set of elements is added to the sideset. If the shape of the surface
is such that multiple disconnected sets of elements fall within the specified spherical or cylindrical region, the filter option
will limit the faces added to the sideset to the one set closest to center.

Using the partition option changes this behavior. The partition option causes the surface to be split, based on the faces
included in the patch. The newly created patch surface will be added to the sideset instead of the individual elements. If
the mesh is deleted and a new mesh is generated, the new mesh on the patch surface will automatically be included in
the sideset, just as occurs with other geometric entities assigned to sidesets.

Note that the sideset patch commands work with both triangular and quadrilateral faces.

Grouping elements in voids and enclosures

The sideset start enclosure command creates sidesets of monotonically increasing ID numbers containing the elements
comprising the watertight skin of the input elements. When there's a 'void' in the middle of the elements, a region devoid
of elements, though still enclosed by elements, this enclosed region will also have a sideset defined on the skin of the
enclosed region.

Sideset Start <id> Enclosure {Volume|Hex|Tet} <range>

The start id is the id of the sideset at which to start. The ID numbers will increase monotonically unless there is a
conflicting ID number. The command will add as many sidesets as there are fully continuous regions or tris or faces in the
input group. This function can be particularly helpful for calculations for radiation enclosures.

Deleting Nodesets and Sidesets

All Nodesets, Sidesets and Blocks may be deleted from the model using the following command:

Reset Genesis

To remove only nodesets or sidesets, the following may be used:

Reset Nodeset

Reset Sideset

To remove a specific nodeset or sideset, use:

Delete Nodeset <nodeset_id_range>

Delete Sideset <sideset_id_range>

Displaying Nodesets and Sidesets

Nodesets and Sidesets can be viewed individually through CUBIT by employing the following commands:

Draw NodeSet <nodeset_id_range> [Color <color_spec>] [add]

Cubit 13.2 User Documentation

710

Draw SideSet <sideset_id_range> [Color <color_spec>] [add]

Nodeset and Sideset colors can also be changed using the following commands:

Color NodeSet <nodeset_id_range> {color|Default}

Color SideSet <sideset_id_range> {color|Default}

Nodeset Associativity Data

Nodesets can be used to store geometry associativity data in the Exodus II file. This data can be used to associate the
corresponding mesh to an existing geometry in a subsequent CUBIT session. This functionality can be used either to
associate a previously-generated mesh with a geometry (See Importing an Exodus II File), or to associate a field function
with a geometry for adaptive surface meshing (See Adaptive Meshing).

The commands to control and list whether associativity data is written or read from an Exodus II files are the following:

List Import Mesh NodeSet Associativity

List [Export Mesh] NodeSet Associativity

List [Export Mesh] NodeSet Associativity Complete

set Import Mesh NodeSet Associativity [ON|off]

[set] [Export Mesh] NodeSet Associativity [on|OFF]

[set] [Export Mesh] NodeSet Associativity Complete [On|OFF]

Associativity data is stored in the Exodus II file in two locations. First, a nodeset is written for each piece of geometry
(vertices, curves, etc) containing the nodes owned for that geometry. Then, the name of each geometry entity is
associated with the corresponding nodeset by writing a property name and designating the corresponding nodeset as
having that property. Nodeset numbers used for associativity nodesets are determined by adding a fixed base number
(depending on the order of the geometric entity) to the geometric entity id number. The base numbers for various orders
of geometric entities are shown in the following table. For example, nodes owned by curve number 26 would be stored in
associativity nodeset 40026.

Table 1. Nodeset ID base numbers for geometric entities

Geometric Entity Base Nodeset ID

Vertex 50000

Curve 40000

Surface 30000

Volume 20000

Instead of storing just the nodes owned by a particular entity, nodes for lower order entities are also stored. For example,
the associativity nodeset for a surface would contain all nodes owned by that surface as well as the nodes on the
bounding curves and vertices.

Equation-Controlled Distribution Factors

By default, distribution factors on nodesets or sidesets are written with a constant value of "1" at each node. It is also
possible to vary the distribution factor for each node in a nodeset or sideset, using an equation to control the value of the
distribution factor at each node. To do so, an equation must first be defined using the command:

Create Equation "<expression>" name "<name>"

where expression is any mathematical expression which evaluates to a single number, and name is the name by which
this equation will be known. The expression is written using aprepro syntax, with a few differences from the use of
APREPRO in its usual context.

Nodeset and Sideset Specification

711

1. The expression as a whole is not wrapped in curly braces "{" and"}".
2. The expression may include any of the following pre-defined variables:

{x} - The x-coordinate of the current node
{y} - The y-coordinate of the current node
{z} - The z-coordinate of the current node
{n} - The CUBIT ID of the current node. This is the ID of the node in CUBIT, which may not be the
same as the node's ID in the Exodus II file.

For example, to define an equation which varies from -10 to 10 based on the sine of the node's x_coordinate:

Create Equation "10*sin({x})" Name "my_equation"

Once an equation has been defined, it can be applied to a nodeset or sideset:

{Nodeset|Sideset} <id> Distribution Equation "<equation_name>"

For example, to apply the equation created earlier to nodeset 10:

Nodeset 10 Distribution Equation "my_equation"

When nodeset 10 is written to an Exodus II file, "my_equation" will be evaluated once for each node in the nodeset, with
the values of {x}, {y}, {z}, and {n} set to appropriate values for the node. The result is used as the distribution factor for that
node.

Here is a complete example that writes out the distribution factors 0.0, 0.5, and 1.0 for the 3 nodes on the curve:

Create a straight line from (0,0,0) to (1,0,0)
create vertex 0 0 0
create vertex 1 0 0
create curve vertex 1 2
Mesh with 3 nodes
curve 1 interval 2
mesh curve 1
Create a block and a nodeset
block 1 curve 1
nodeset 1 curve 1
Define an equation and apply it to the nodeset
create equation "{x}" name "simple_eq"
nodeset 1 distribution equation "simple_eq"
Write the mesh
export mesh "temp.g" overwrite

Here is another complete example that varies the distribution factors for sideset 20 from zero to 1, depending on the
node's x-coordinate. The sideset is applied to sides of HEX20 elements, so each element side has 8 different distribution
factors.

Mesh a cube
brick x 10
mesh volume 1
Create a block of 20-noded hexes
block 1 volume 1
block 1 element type hex20
Apply a sideset to be used for a variable pressure
sideset 20 surface 1
Define an equation and apply it to the sideset
create equation "({x}+5)/10" name "zero_to_one"
sideset 20 distribution equation "zero_to_one"
Write the mesh
export mesh "temp.g" overwrite

Note that distribution equations only affect Exodus II output. Equations are currently ignored for other mesh file types.

See APREPRO in the appendix.

Cubit 13.2 User Documentation

712

Nodesets/Sidesets/Blocks Behavior with Geometric Entity Copy

The below commands can be used set the behavior of nodesets/sideset/blocks when a copy command is applied on
geometric entities. The default OFF option states that the nodesets/sideset/blocks will not be copied to new geometric
entity if the original geometric entity contains nodesets/sideset/blocks. The "on" option implies that the
nodesets/sideset/blocks present in the original geometric entity will be copied to new geometric entity. The use_original
option indicates that the new geometric entities created after the copy command will have the nodesets/sidesets/blocks
present in the original geometric entities.

set copy_nodeset_on_geometry_copy [on | OFF| use_original]

set copy_sideset_on_geometry_copy [on | OFF| use_original]

set copy_block_on_geometry_copy [on | OFF| use_original]

713

Nodeset and Sideset Specification

 Creating Nodesets and Sidesets

 Assigning Names and Descriptions to Nodesets and Sidesets

 Grouping Faces on a Surface into a Sideset

 Deleting Nodesets and Sidesets

 Displaying Nodesets and Sidesets

 Nodeset Associativity Data

 Equation-Controlled Distribution Factors

 Nodesets/Sidesets/Blocks Behavior with Geometric Entity Copy

Boundary conditions such as constraints and loads are applied to the finite element model using nodesets or sidesets,
also known as Genesis entities. Rather than attempting to maintain specific boundary condition information, such as load,
temperature, constraint, etc., Genesis entities are the generic vehicle for the user to set up boundary conditions on the
model. Nodes, elements and element faces are instead grouped together and assigned unique IDs. Node, element and
face IDs assigned to Genesis entities can then be written to the Exodus II mesh file. Once imported to the intended
analysis application, the nodeset and sideset IDs can be appropriately interpreted as specific physical boundary
conditions.

The preferred method for creating Genesis entities is to assign vertices, curves, surfaces or volumes to a specific nodeset
or sideset ID. Any mesh entity owned by the geometric entity in a nodeset or sideset is automatically assigned to the
same nodeset or sideset. This allows greatest flexibility in generating and updating the finite element mesh. For example,
if a surface belongs to a specific sideset, remeshing the surface will automatically delete any old faces from the sideset
and add the faces of the new mesh.

In some cases, the geometric model does not provide enough resolution to define the desired boundary conditions. In this
case, the model may be partitioned using CUBIT's virtual geometry features. Where this may not be feasible, mesh
entities can also be added directly to the desired nodeset or sideset. Where individual mesh entities have been added to
nodesets or sidesets, deleting the mesh will also remove these elements from the Genesis entity. If the geometry is
remeshed, the new mesh entities must also be added once again to the nodesets or sidesets.

Nodesets can be created from groups of nodes categorized by their owning volumes, surfaces, curves or vertex.
Individual nodes may also be added to a nodeset. Nodes can belong to more than one nodeset.

Sidesets can be created from groups of element sides or faces categorized by their owning surfaces or curves or by their
individual face IDs. Element sides and faces can also belong to more than one sideset.

Creating Nodesets and Sidesets

Nodesets and Sidesets are created in CUBIT by assigning the appropriate geometry or mesh entities in the model to a
nodeset or sideset ID. The following commands can be used:

Nodeset <nodeset_id> {Curve | Surface | Volume | Vertex | Node} <range> [Remove]

Sideset <sideset_id> Group <id_range> [remove]

Sideset <sideset_id> {Curve|Surface|Edge|Face|Tri} <id_range> Remove

Sideset <sideset_id> Edge <id_range> [wrt {{Tri|Face} <id_range> | all }]

Sideset <sideset_id> Face <id_range> [wrt {Hex <id_range> | all}]

Sideset <sideset_id> Tri <id_range> [wrt {Tet <id_range> | all}]

Sideset <sideset_id> Surface <id_range> [wrt {{Volume|Surface} <id_range> | all}]
[FORWARD|Reverse|Both]

Sideset <sideset_id> Curve <id_range> [wrt {Surface <id_range> | all}]

Like element blocks, Nodesets and Sidesets are given arbitrary, user-defined ID numbers. If there are no user-defined
Nodesets or Sidesets, none are written to the Exodus II file.

Cubit 13.2 User Documentation

714

With Sidesets, direction is often important. For surfaces, the direction may be specified using the Forward, Reverse, or
Both options. The Forward option will write a sideset in relation to hexes in the surface's forward volume, which is the
volume that the surface's normal points away from. The Reverse option will write a sideset in relation to hexes in the
surface's reverse volume, which is the volume that the surface's normal points into. The Both option will allow sidesets to
be written in relation to the hexes that lie in volumes on both sides of the surface. The default is Forward. The user can
additionally specify the volume from which the hexes should be taken in relation to by using the wrt Volume option.

Direction is equally important for curves in Sidesets. The wrt Surface option allows the user to indicate which surface's
faces will be included in the Sideset. The wrt All option will include all faces attached to the curve. The default is wrt All.

Useful hint:

When creating nodesets and sidesets it is often userful to use the Extended Command Line Entity Specification. Here is
an example that creates a nodeset which includes all the nodes on the exterior of the geometry:

Create the geometry Create brick x 10 Create cylinder height 10 radius 2 Move volume 2 z 10 #
Merge the geometry Merge volume all # Mesh the geometry Mesh volume all # Create a nodeset that
includes only those nodes # located on the exterior of the geometry Nodeset 1 surface in volume all
with not is_merged

The following commands remove nodes from the nodeset that belong to a surface. Continuing from the previous example:

Remove surface 2 from the nodeset Nodeset 1 surface 2 remove # Remove nodes from the
nodeset # that belong to the curves that bound surface 2 Nodeset 1 node in curve in surface 2
remove

Nodes can also be added or removed based upon their coordinates. Here is an example that removes all the nodes with a
z coordinate equal to 15. Continuing from the previous example:

Remove the nodes with a z coordinate equal to 15 Nodeset 1 node in surface all with z_coord = 15
remove

Assigning Names and Descriptions to Nodesets and Sidesets

Nodesets and sidesets can be assigned names and descriptions. Using names and descriptions is often more intuitive
than using traditional integer IDs. When exporting a mesh as a DART artifact, names and descriptions are included in the
metadata, making them available to DART metadata-enabled applications such as SIMBA. To give a name or description
to nodeset or sideset, use one of the following commands:

{Nodeset|Sideset} <ids> Name "<new_name>"

{Nodeset|Sideset} <ids> Description "<description>"

This command can also be used to define names and descriptions for Element Blocks.

Grouping Faces on a Surface into a Sideset

A sideset can be created from a subset of the faces on a given surface by using one of the following commands:

SideSet <sideset_id> Surface <id_range> Patch Maximum <x> <y> <z> Minimum <x> <y> <z>

SideSet <sideset_id> Surface <id_range> Patch Center <x> <y> <z> Radius <value> [Filter] [Partition]

SideSet <sideset_id> Surface <id_range> Patch Center <x> <y> <z> Outer_radius <value> Inner_radius <value> [Filter]
[Partition]

SideSet <sideset_id> Surface <id_range> Patch Cylinder <axis_specification> Radius <rad> [Filter] [Partition]

SideSet <sideset_id> Surface <id_range> Patch Cylinder <axis_specification> Outer_radius <rad> Inner_radius <rad>
[Filter] [Partition]

These commands place only the faces meeting the specified criteria into the sideset.

 Using the maximum and minimum options will include all faces on the surface whose centroid falls within the
axis-aligned box defined by the maximum and minimum points.

Nodeset and Sideset Specification

715

 Using the center and radius options will include all faces on the surface whose centroid falls within the sphere
defined by center and radius.

 Using the center, outer_radius, and inner_radius options will include all faces on the surface whose centroid
falls within the sphere defined by center and outer_radius, but excluding those faces whose centroid falls within
the sphere defined by center and inner_radius. In other words, a face will be included if the distance between
the face and the center point is between inner_radius and outer_radius.

 Using the cylinder option will include all faces whose centroid falls within a cylinder of infinite length with the
given axis and radius. The axis is specified as described in Specifying an Axis.

 Using the optional inner_radius will exclude those faces whose centroid is closer to the axis than the specified
inner_radius.

Normally, these commands place the individual elements into the sideset. If the mesh on the surface is deleted, the
elements will be removed from the sideset. If the surface is then remeshed, new elements will NOT automatically be
added to the sideset. This is usually the intended behavior.

If the filter option is included, only a single connected set of elements is added to the sideset. If the shape of the surface
is such that multiple disconnected sets of elements fall within the specified spherical or cylindrical region, the filter option
will limit the faces added to the sideset to the one set closest to center.

Using the partition option changes this behavior. The partition option causes the surface to be split, based on the faces
included in the patch. The newly created patch surface will be added to the sideset instead of the individual elements. If
the mesh is deleted and a new mesh is generated, the new mesh on the patch surface will automatically be included in
the sideset, just as occurs with other geometric entities assigned to sidesets.

Note that the sideset patch commands work with both triangular and quadrilateral faces.

Grouping elements in voids and enclosures

The sideset start enclosure command creates sidesets of monotonically increasing ID numbers containing the elements
comprising the watertight skin of the input elements. When there's a 'void' in the middle of the elements, a region devoid
of elements, though still enclosed by elements, this enclosed region will also have a sideset defined on the skin of the
enclosed region.

Sideset Start <id> Enclosure {Volume|Hex|Tet} <range>

The start id is the id of the sideset at which to start. The ID numbers will increase monotonically unless there is a
conflicting ID number. The command will add as many sidesets as there are fully continuous regions or tris or faces in the
input group. This function can be particularly helpful for calculations for radiation enclosures.

Deleting Nodesets and Sidesets

All Nodesets, Sidesets and Blocks may be deleted from the model using the following command:

Reset Genesis

To remove only nodesets or sidesets, the following may be used:

Reset Nodeset

Reset Sideset

To remove a specific nodeset or sideset, use:

Delete Nodeset <nodeset_id_range>

Delete Sideset <sideset_id_range>

Displaying Nodesets and Sidesets

Nodesets and Sidesets can be viewed individually through CUBIT by employing the following commands:

Draw NodeSet <nodeset_id_range> [Color <color_spec>] [add]

Cubit 13.2 User Documentation

716

Draw SideSet <sideset_id_range> [Color <color_spec>] [add]

Nodeset and Sideset colors can also be changed using the following commands:

Color NodeSet <nodeset_id_range> {color|Default}

Color SideSet <sideset_id_range> {color|Default}

Nodeset Associativity Data

Nodesets can be used to store geometry associativity data in the Exodus II file. This data can be used to associate the
corresponding mesh to an existing geometry in a subsequent CUBIT session. This functionality can be used either to
associate a previously-generated mesh with a geometry (See Importing an Exodus II File), or to associate a field function
with a geometry for adaptive surface meshing (See Adaptive Meshing).

The commands to control and list whether associativity data is written or read from an Exodus II files are the following:

List Import Mesh NodeSet Associativity

List [Export Mesh] NodeSet Associativity

List [Export Mesh] NodeSet Associativity Complete

set Import Mesh NodeSet Associativity [ON|off]

[set] [Export Mesh] NodeSet Associativity [on|OFF]

[set] [Export Mesh] NodeSet Associativity Complete [On|OFF]

Associativity data is stored in the Exodus II file in two locations. First, a nodeset is written for each piece of geometry
(vertices, curves, etc) containing the nodes owned for that geometry. Then, the name of each geometry entity is
associated with the corresponding nodeset by writing a property name and designating the corresponding nodeset as
having that property. Nodeset numbers used for associativity nodesets are determined by adding a fixed base number
(depending on the order of the geometric entity) to the geometric entity id number. The base numbers for various orders
of geometric entities are shown in the following table. For example, nodes owned by curve number 26 would be stored in
associativity nodeset 40026.

Table 1. Nodeset ID base numbers for geometric entities

Geometric Entity Base Nodeset ID

Vertex 50000

Curve 40000

Surface 30000

Volume 20000

Instead of storing just the nodes owned by a particular entity, nodes for lower order entities are also stored. For example,
the associativity nodeset for a surface would contain all nodes owned by that surface as well as the nodes on the
bounding curves and vertices.

Equation-Controlled Distribution Factors

By default, distribution factors on nodesets or sidesets are written with a constant value of "1" at each node. It is also
possible to vary the distribution factor for each node in a nodeset or sideset, using an equation to control the value of the
distribution factor at each node. To do so, an equation must first be defined using the command:

Create Equation "<expression>" name "<name>"

where expression is any mathematical expression which evaluates to a single number, and name is the name by which
this equation will be known. The expression is written using aprepro syntax, with a few differences from the use of
APREPRO in its usual context.

Nodeset and Sideset Specification

717

1. The expression as a whole is not wrapped in curly braces "{" and"}".
2. The expression may include any of the following pre-defined variables:

{x} - The x-coordinate of the current node
{y} - The y-coordinate of the current node
{z} - The z-coordinate of the current node
{n} - The CUBIT ID of the current node. This is the ID of the node in CUBIT, which may not be the
same as the node's ID in the Exodus II file.

For example, to define an equation which varies from -10 to 10 based on the sine of the node's x_coordinate:

Create Equation "10*sin({x})" Name "my_equation"

Once an equation has been defined, it can be applied to a nodeset or sideset:

{Nodeset|Sideset} <id> Distribution Equation "<equation_name>"

For example, to apply the equation created earlier to nodeset 10:

Nodeset 10 Distribution Equation "my_equation"

When nodeset 10 is written to an Exodus II file, "my_equation" will be evaluated once for each node in the nodeset, with
the values of {x}, {y}, {z}, and {n} set to appropriate values for the node. The result is used as the distribution factor for that
node.

Here is a complete example that writes out the distribution factors 0.0, 0.5, and 1.0 for the 3 nodes on the curve:

Create a straight line from (0,0,0) to (1,0,0)
create vertex 0 0 0
create vertex 1 0 0
create curve vertex 1 2
Mesh with 3 nodes
curve 1 interval 2
mesh curve 1
Create a block and a nodeset
block 1 curve 1
nodeset 1 curve 1
Define an equation and apply it to the nodeset
create equation "{x}" name "simple_eq"
nodeset 1 distribution equation "simple_eq"
Write the mesh
export mesh "temp.g" overwrite

Here is another complete example that varies the distribution factors for sideset 20 from zero to 1, depending on the
node's x-coordinate. The sideset is applied to sides of HEX20 elements, so each element side has 8 different distribution
factors.

Mesh a cube
brick x 10
mesh volume 1
Create a block of 20-noded hexes
block 1 volume 1
block 1 element type hex20
Apply a sideset to be used for a variable pressure
sideset 20 surface 1
Define an equation and apply it to the sideset
create equation "({x}+5)/10" name "zero_to_one"
sideset 20 distribution equation "zero_to_one"
Write the mesh
export mesh "temp.g" overwrite

Note that distribution equations only affect Exodus II output. Equations are currently ignored for other mesh file types.

See APREPRO in the appendix.

Cubit 13.2 User Documentation

718

Nodesets/Sidesets/Blocks Behavior with Geometric Entity Copy

The below commands can be used set the behavior of nodesets/sideset/blocks when a copy command is applied on
geometric entities. The default OFF option states that the nodesets/sideset/blocks will not be copied to new geometric
entity if the original geometric entity contains nodesets/sideset/blocks. The "on" option implies that the
nodesets/sideset/blocks present in the original geometric entity will be copied to new geometric entity. The use_original
option indicates that the new geometric entities created after the copy command will have the nodesets/sidesets/blocks
present in the original geometric entities.

set copy_nodeset_on_geometry_copy [on | OFF| use_original]

set copy_sideset_on_geometry_copy [on | OFF| use_original]

set copy_block_on_geometry_copy [on | OFF| use_original]

719

Exodus II File Specification

Exodus II Manual

The full Exodus II manual is available from the web.

Element Block Definition Examples

Multiple Element Blocks

Multiple element blocks are often used when generating a finite element mesh. For example, if the finite element model
consists of a block which has a thin shell encasing the volume mesh, the following block commands would be used:

Block 100 Volume 1
Block 100 Element Type Hex8
Block 200 Surface 1 To 6
Block 200 Element Type Shell4
Block 200 Attribute 0.01
Mesh Volume 1
Export Genesis `block.g'

This sequence of commands defines two element blocks (100 and 200). Element block 100 is composed of 8-node
hexahedral elements and element block 200 is composed of 4-node shell elements on the surface of the block. The
"thickness" of the shell elements is 0.01. The finite element code which reads the Genesis file (block.g) would refer to
these blocks using the element block IDs 100 and 200. Note that the second line and the fourth line of the example are
not required since both commands represent the default element type for the respective element blocks.

Surface Mesh Only

If a mesh containing only the surface of the block is desired, the first two lines of the example would be omitted and the
Mesh Volume 1 line would be changed to, for example

Mesh Surface 1 To 6.

Two-dimensional Mesh

CUBIT also provides the capability of writing two-dimensional Genesis databases similar to FASTQ. The user must first
assign the appropriate surfaces in the model to an element block. Then a Quad* type element may be specified for the
element block. For example

Block 1 Surface 1 To 4
Block 1 Element Type Quad4

In this case, it is important for users to note that a two-dimensional Genesis database will result. In writing a two-
dimensional Genesis database, CUBIT ignores all z-coordinate data. Therefore, the user must ensure that the Element
Block is assigned to a planar surface lying in a plane parallel to the x-y plane. Currently, the Quad* element types are the
only supported two-dimensional elements. Two-dimensional shell elements will be added in the near future if required.

http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf

721

Exodus II Model Title

CUBIT will automatically generate a default title for the Genesis database. The default title has the form:

cubit(genesis_filename): date: time

The title can be changed using the command:

Title '<title_string>'

723

Exodus Coordinate Frames

CUBIT allows the user to define coordinate systems (frames) that are written to an Exodus II file. These coordinate frames
are generally used as reference coordinate systems during analysis. In CUBIT, the user may define multiple exodus
coordinate frames. When created, a coordinate frame is assigned an id. Exodus coordinate frames can be created using
x-y-z coordinates, nodes or vertices with the following commands:

Exodus Create Coordinate Frame
<xval> <yval> <zval>//origin
<xval> <yval> <zval> //z-axis
<xval> <yval> <zval> //xz-plane
[tag { 'R' | 'C' | 'S' }]

Exodus Create Coordinate Frame Node
<node_origin_id>
<node_zaxis_id>
<node_xzplane_id>
[tag { 'R' | 'C' | 'S' }]

Exodus Create Coordinate Frame Vertex
<vertex_origin_id>
<vertex_zaxis_id>
<vertex_xzplane_id>
[tag { 'R' | 'C' | 'S' }]

Using the 'tag' option specifies the type of coordinate frame, i.e., rectangular (R), cylindrical (C) or spherical (S). The
default coordinate frame type is rectangular. Exodus coordinate frames may also be listed and deleted using the
commands below:

List Exodus Coordinate Frame [ids] [<frame_id>]

Delete Exodus Coordinate Frame [ids] [<frame_id>| all]

Any exodus coordinate frames that exist at the time the exodus file is exported will be written out in the exodus file.

725

Defining Materials and Media Types

Materials can be defined in CUBIT and assigned to element blocks. If an element block is exported without a material
assigned to it, a default material (with properties for common steel) will be exported for it.

Create Material [id] [Name <'name'>] [Elastic_modulus <value>] [Poisson_ratio <value>]
[Shear_modulus <value>] [Density <value>] [Specific_heat <value>] [Conductivity <value>] [User
constants <value ...>] [DepVar <value>]

Modify Material <id_list|'name'|all> [Name <'name'>] [Elastic_modulus <value>] [Poisson_ratio
<value>] [Shear_modulus <value>] [Density <value>] [Specific_heat <value>] [Conductivity <value>]
[User constants <value ...>] [DepVar <value>]

Create Media [id] [Name <'name'>] [Fluid|Porous|Solid]

Modify Media <id_list|'name'|all> [Name <'name'>] [Fluid|Porous|Solid]

Materials can be created with any number of the following material properties:

 Elastic modulus

 Poisson Ratio

 Density

 Specific Heat

 Conductivity

 Shear Modulus (must satisfy E = 2G(1+v))

 User Constants

 DepVar (Only written to Abaqus file)

Media types include:

 Fluid

 Porous

 Solid

Any properties that are not initialized by the user will have a default value of 0.

Materials and media types can be listed and deleted using the following commands:

List Material <id_list|'name'|all>

Delete material <id_list|'name'|all>

List Media <id_list|'name'|all>

Delete Media <id_list|'name'|all>

Materials and media can be added to an existing block using the following command:

Block <id> Material <id|'name'>

Block <id> Media <id|'name'>

727

Boundary Condition Sets

Create bcset [id] [name <'name'>] [After bcset <id>] [{Add|Remove} {bc_type} <id-range | <with name
'name'> >] [analysistype {STATIC|heat|dynamic|modal}] [modal_max_frequency <value>]

Modify bcset {id_list|'name'|all} [name <'name'>] [After bcset <id>] [{Add|Remove} {bc_type} <id-range |
<with name 'name'> >] [analysistype {STATIC|heat|dynamic|modal}]

*** ABAQUS Parameters ***

Modify bcset {id_list|'name'|all} [max_step_increments <value>] [nonlinear_geometry
<on|OFF>][perturbation <on|OFF>][stabilize <on|OFF>] [steadystate <on|OFF>][modal_max_frequency
<value>]

Modify bcset {id_list|'name'|all} [initial_step_size <value>] [step_period <value>][min_step_size
<value>] [max_step_size <value>][min_step_temperature_change <value>]

Modify bcset {id_list|'name'|all} [mass_scaling <on|OFF>] [mass_scaling_dt
<value>][mass_scaling_factor <value>] [mass_scaling_type <'uniform'|'BELOW_MIN'|'set_equal_dt'>]

Modify bcset {id_list|'name'|all} [restart <on|OFF>][restart_overlay
<on|OFF>] [{restart_frequency|restart_num_intervals} <value>]

Modify bcset {id_list|'name'|all} [output_field <on|OFF>] [output_field_frequency <value>]
[output_history <on|OFF>] [output_history_frequency <value>]

Modify bcset {id_list|'name'|all} [el_file <on|OFF>][el_file_frequency <value>] [node_file
<on|OFF>][node_file_frequency <value>]

Modify bcset {id_list|'name'|all} [el_print <on|OFF>][el_print_frequency <value>] [node_print
<on|OFF>][node_print_frequency <value>]

*** NASTRAN Parameters ***

Modify bcset {id_list|'name'|all} {displacement_output <on|OFF> {PLOT|print|punch|punchprint} {group
<ALL|none|<id>> }}

Modify bcset {id_list|'name'|all} {oload <on|OFF> {PLOT|print|punch|punchprint} {group <ALL|none|<id>>
}}

Modify bcset {id_list|'name'|all} {mpcforces <on|OFF> {PLOT|print|punch|punchprint} {group
<ALL|none|<id>> }}

Modify bcset {id_list|'name'|all} {spcforces <on|OFF> {PLOT|print|punch|punchprint} {group
<ALL|none|<id>> }}

Modify bcset {id_list|'name'|all} {stress <on|OFF> {PLOT|print|punch|punchprint} {group
<ALL|none|<id>> } {CENTER|cubic|sgage|corner} {VONMISES|maxs}}

Modify bcset {id_list|'name'|all} {element_strain_energy <on|OFF>
{PLOT|print|punch|punchprint} {group <ALL|none|<id>> } {AVERAGE|amplitude|peak}}

CUBIT can create BC sets, which is a group of previously defined loads, restraints and contact pairs. A BCSet is used to
define a load case (analysis step) when writing out 3rd party analysis decks. A BCSet can be a static analysis set, a
thermal analysis set, a modal analysis set, or a dynamic analysis set by specifying the analysistype. The After keyword
can be used to define the order that the BCSets will be written when the model is exported.

Several solver-specific parameters can be set for a BCSet. For ABAQUS, parameters associated with *STEP, *STATIC,
*DYNAMIC, *FREQUENCY, *HEAT TRANSFER, *MASS SCALING, *RESTART, *OUTPUT, *EL FILE, *NODE FILE, *EL
PRINT, and *NODE PRINT can be modified. For Nastran, output requests can be defined for Displacement, Reaction
Loads, MPC Forces, SPC Forces, Stress, and Element Strain Energy.

729

Using Restraints

 Displacement

 Acceleration

 Velocity

 Temperature

Displacements/Accelerations/Velocities

A CUBIT user has the ability to create displacement boundary conditions on most geometric entities found within Cubit.

Create Displacement [id] [Name <'name'>] [{Add|On}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>] [DOF
{All|{[1][2][3][4][5][6]}} Fix <value>] [SmallestCombine|Average|LargestCombine|OVERWRITE]

Modify Displacement {id_list|'name'|all} [name <'name'>] [{Add|Remove}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>] [DOF
{All|{[1][2][3][4][5][6]}} {Fix <value>|Free}] [SmallestCombine|Average|LargestCombine|OVERWRITE]

Create Acceleration [id] [Name <'name'>] [{Add|On}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>] [DOF {All|{[1][2][3][4][5][6]}}
Fix <value>] [SmallestCombine|Average|LargestCombine|OVERWRITE]

Modify Acceleration {id_list|'name'|all} [name <'name'>] [{Add|Remove}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>] [DOF {All|{[1][2][3][4][5][6]}}
{Fix <value>|Free}] [SmallestCombine|Average|LargestCombine|OVERWRITE]

Create Velocity [id] [Name <'name'>] [{Add|On}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>] [DOF {All|{[1][2][3][4][5][6]}}
Fix <value>] [SmallestCombine|Average|LargestCombine|OVERWRITE]

Modify Velocity {id_list|'name'|all} [name <'name'>] [{Add|Remove}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>] [DOF {All|{[1][2][3][4][5][6]}}
{Fix <value>|Free}] [SmallestCombine|Average|LargestCombine|OVERWRITE]

A number of required and optional keywords make the BC create displacement command one of the more complicated of
the boundary condition commands. These keywords will be examined individually in detail.

Degrees of Freedom

The dof keyword is the heart of this command. It specifies how to constrain the entity in question. The keyword is an
abbreviation for ‘degree of freedom’. Typing the optional keyword all tells CUBIT that the entered command will
encompass all six degrees of freedom. The degrees of freedom (1 - 6) are defined below in Table 2.

Table 2: CUBIT definitions of the six degrees of freedom.

DOF Physical analog

1 x-translation

2 y-translation

3 z-translation

4 x-rotation

5 y-rotation

Cubit 13.2 User Documentation

730

6 z-rotation

CUBIT will allow displacement commands to be applied upon between one and all six of the degrees of freedom. The
degrees of freedom do not need to be entered in any order. The command strings ‘ 1 2 3 4 5 6 ‘ ‘2 6 1 4 3 5’ and ‘all’ will
end with the same result.

Fixed or Free

The fix and free keywords tell CUBIT whether an entity’s displacement defined by the dof keyword is to be enforced with
a finite value or not. If the displacement is fixed, the entity will be constrained in the pre-specified degrees of freedom. A
decimal number entered after the fix keyword will be the value of the enforced degree(s) of freedom. CUBIT allows the
user to leave this value blank if the enforced displacement is to be zero, for convenience. However, entering ‘0’ is still
permitted. If a user wishes to remove a displacement from an entity, he or she should just delete it rather than trying to set
all of the degrees of freedom to free.

Displacement Combinations

The SmallestCombine, Average and LargestCombine keywords deal with displacement combinations. These keywords
only apply when a user is modifying an existing displacement boundary condition.

The SmallestCombine keyword will compare the existing displacement values with the current (residing on the command
line) displacement values. The keyword will modify the displacement to the match the displacements dictated by the
boundary condition that has the smallest absolute value. If the boundary condition with the smallest absolute value is the
existing value, the displacement boundary condition will be unchanged. If the current boundary condition has a smaller
absolute value than the existing displacement, the displacement boundary condition will be changed to incorporate the
new values.

The Average keyword will average the existing displacement values with the current (residing on the command line)
displacement values. Note that these averages are not continually updated (i.e., they are not weighted). If a user created
a displacement boundary condition and constrained a degree of freedom to 10.0 and then constrained the same degree of
freedom to 20.0 with the Average keyword, the new displacement value would be 15.0. But if a user constrained the same
degree of freedom to 30.0, while using the Average keyword, the new displacement value would be 22.5 ([15+30]/2), not
20.0 ([10+20+30]/3).

The LargestCombine keyword will compare the existing displacement values with the current (residing on the command
line) displacement values. The keyword will modify the displacement to the match the displacements dictated by the
boundary condition that has the largest absolute value. If the boundary condition with the largest absolute value is the
existing value, the displacement boundary condition will be unchanged. If the current boundary condition has a larger
absolute value than the existing displacement, the displacement boundary condition will be changed to incorporate the
new values.

When none of these keywords are specified, CUBIT will combine displacements in its default mode, Overwrite. The
Overwrite keyword overwrites the entity’s previous displacement boundary condition(s) with the displacement values
specified in the command.

Temperature

CUBIT can create temperature boundary conditions on most geometric and mesh entities. The temperature boundary
condition can also be applied to thin-shell elements.

Create Temperature [id] [Name <'name'>] [{Add|On}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>] [Value <val>]

Create Temperature [id] [Name <'name'>] [{Add|On}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>] [{ Top <val>
Bottom <val> | [Middle <val>] [Gradient <val>] }]

Modify Temperature {id_list|'name'|all} [name <'name'>] [{Add|Remove}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>] [Value <val>]

Modify Temperature {id_list|'name'|all} [name <'name'>] [{Add|Remove}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>] [{ Top <val>
Bottom <val> | [Middle <val>] [Gradient <val>] }]

Using Restraints

731

The value keyword defines the amplitude (temperature). The other command options are discussed below

Top, Gradient, Middle, Bottom

The above keywords are only used for thin-shell elements (i.e., 2D entities). The valid combinations are limited to: top and
bottom, middle and gradient, only gradient or only middle. It should be noted that temperature boundary conditions cannot
contain regular and thin-shell temperature values.

733

Using Loads

 Force

 Pressure

 Heat Flux

 Convection

Forces

Create Force [id] [Name <'name'>] [{Add|On} {Nodeset|Surface|Curve|Vertex|Face|Tri|Edge|Node}
<entity_list>] [Force Value <val>] [Moment Value <val>] [Direction { direction_options}]

Create Force [id] [Name <'name'>] [{Add|On} {Nodeset|Surface|Curve|Vertex|Face|Tri|Edge|Node}
<entity_list>] [Vector <val> <val> <val> <val> <val> <val>]

Modify Force {id_list|'name'|all} [Name <'name'>] [{Add|Remove}
{Nodeset|Surface|Curve|Vertex|Face|Tri|Edge|Node} <entity_list>] [Force Value <val>] [Moment
Value <val>] [Direction { direction_options}]

Modify Force {id_list|'name'|all} [Name <'name'>] [{Add|Remove}
{Nodeset|Surface|Curve|Vertex|Face|Tri|Edge|Node} <entity_list>] [Vector <val> <val> <val> <val>
<val> <val>]

A CUBIT user has the ability to create forces on 0D, 1D, and 2D entities. A force can be created using the direction syntax
(see Specifying Direction). If the vector keyword is used, the first three values are the force components, and the last
three values are the moment components.

The use of the force and moment keywords specify the type of load. If both a force and a moment are to be applied, first
create one of them, then modify it to add the other. Note that every instance of a force or moment keyword must have an
accompanying value keyword.

Regarding force and moment keywords, the following detail may be helpful:

A user may create a force and moment at the same time, but can only specify a direction once. If the force and moment
have the same unit vector, it will be successful. If a users wants to create a force in the direction 1,2,3 and a moment in
the direction 1,0,0, the user will have to create one, then add the other by modifying it.

Using Pressure

Create Pressure [id] [Name <'name'>] [{Add|On} {Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>]
[Magnitude <value>] [TOP|Bottom] [PRESSURE|Totalforce]

Modify Pressure {id_list|'name'|all} [Name <'name'>] [{Add|Remove}
{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Magnitude <value>] [TOP|Bottom]
[PRESSURE|Totalforce]

Cubit users can create pressure boundary conditions on 1D and 2D entities. Positive surface pressures acting on solid
elements are defined as pointing into the face of the elements. Pressures are always normal to the face. For shells and
independent surfaces, a ‘left-hand-rule’ is employed. Point your left thumb at the surface in question. If the direction your
fingers curl matches the direction of ascending vertex numbering, the direction of the pressure vectors will match the
direction of your thumb.

Value

The value variable is the magnitude of the pressure boundary condition. If the user leaves this value blank, CUBIT will
assign the pressure magnitude to zero (possibly a trivial case) and issue a warning. Typing a negative value will not flip
the direction of the pressure arrows on the display; instead, the pressure magnitude will be negative.

Cubit 13.2 User Documentation

734

Pressure and Total Force

The pressure and totalforce keywords are used to modify the pressure boundary condition. The pressure keyword is the
default. All pressures applied with this keyword present (or with both of these keywords absent from the command string)
are pure pressures. If the user enters the totalforce keyword, the pressure magnitude is divided by the area of the surface
the pressure is acting on (or the length of the curve, for a curve pressure). In effect, the user is entering a force that is
treated and exported as a pressure.

Top and Bottom

The top keyword (default) indicates the pressure will occur on the top of a shell element. Specifying bottom will cause the
pressure to be applied to the bottom of the element.

Using Heat Flux

Create Heatflux [id] [Name <'name'>] [{Add|On} {Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>]
[Value <value>]

Create Heatflux [id] [Name <'name'>] [{Add|On} {Sideset|Surface|Face|Tri} <entity_list>] [Top <value>
Bottom <value>]

Modify Heatflux {id_list|'name'|All} [Name <'name'>] [{Add|Remove}
{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Value <value>]

Modify Heatflux {id_list|'name'|All} [Name <'name'>] [{Add|Remove} {Sideset|Surface|Face|Tri}
<entity_list>] [Top <value> Bottom <value>]

A CUBIT user may apply heat flux boundary conditions to 1D and 2D entities, including thin-shell elements.

Top and Bottom Values

Heat fluxes can be applied to thin-shell elements as well. The same rules apply to thin-shell heat fluxes as to thin-shell
temperatures: thin-shell heat fluxes can only be applied to surfaces and heat flux boundary conditions cannot contain
regular and thin-shell heat flux values (see journal below). However, thin-shell heat flux commands do not contain
gradient or middle keyword options. Only top and bottom keywords are supported.

Using Convection

Create Convection [id] [Name <'name'>] [{Add|On} {Sideset|Surface|Curve|Face|Tri|Edge}
<entity_list>] [Surrounding {<value>| Top <value> Bottom <value>} Coefficient {<value>| Top <value>
Bottom <value>}]

Modify Convection [id] [Name <'name'>] [{Add|On} {Sideset|Surface|Curve|Face|Tri|Edge}
<entity_list>] [Surrounding {<value>| Top <value> Bottom <value>} Coefficient {<value>| Top <value>
Bottom <value>}]

A Cubit user can apply convection boundary conditions to 1D and 2D entities. Convection is a transport of thermal energy
that is proportional to the difference between the surface temperature and the temperature of the surroundings.

Surrounding

The surrounding keyword specifies the temperature surrounding the entity with the convection boundary condition.

Coefficient

The coefficient keyword is a convection coefficient, in units of energy per length times time times temperature (i.e.,
[energy]/([length]*[time]*[temperature])).

735

Using Contact Surfaces

 Contact Region

 Contact Pair

 Auto-Contact Tool

The Contact Region

To define contact between two entities, Cubit requires each entity to be defined as a separate contact region. Each
region can be made up of multiple 1D or 2D entities.

Create Contact Region [id] [Name <'name'>] [{Add|On} {Sideset|Surface|Curve|Face|Tri|Edge}
<entity_list>]

Modify Contact Region {id_list|'name'|All} [Name <'name'>] [{Add|Remove}
{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>]

The Contact Pair

create contact pair [id] [name <'name'>] [master contact region <id|'name'>] [slave contact region
<id|'name'>] [friction <value>] [tolerance <value>] [tied {on|OFF}] [General <on|OFF> [Exterior
<on|OFF>]]

modify contact pair {id_list|'name'|all} [name <'name'>] [master contact region <id|'name'>] [slave contact
region <id|'name'>] [friction <value>] [tolerance <value>] [tied {on|OFF}] [General <on|OFF> [Exterior
<on|OFF>]]

A contact pair is composed of two contact regions. One region will be the ‘master’ surface, and the other will be the
‘slave.’ 2D contact regions can not be mixed with 1D contact regions. The friction coefficient can also be included. The
tolerance keyword is currently unused. Use the tied keyword to specify that the contact is to define tied contact between
the two contact regions, essentially “gluing” the parts together. Currently, this option is only available when using the
Abaqus Exporter.

The General keyword can be used to specify general (i.e. global) contact without specifying surfaces/curves to use as
contact pairs. Currently, this keyword is only valid when exporting to Abaqus. If the Exterior keyword is used with the
General keyword, then Abaqus will consider all exterior surfaces when determining contact regions. If the Exterior
keyword is omitted, then the user must provide a master contact region and/or a slave contact region.

Auto-Contact Tool

With the auto-contact tool, Cubit can search for contact pairs and automatically set up all of the necessary contact regions
and contact pairs.

Create Contact Autoselect [{Volume|Surface|Curve} <ids>] [Master Volume <id>] [Maxgap <value>]
[Curve_Contact]

The optional geometry list can be used to limit Cubit’s search to only a subset of entities. If this list is omitted, all bodies in
the model will be searched. The optional master volume keyword can be used to tell Cubit which volume should be used
as the master contact region. If this keyword is omitted, the user will not have control over which volume is the master
region. The maxgap keyword can be used to control how Cubit searches for contact regions. This value is used as the
maximum amount of gap that can exist between two surfaces and be identified as a contact region. If this keyword is
omitted, the geometry tolerance is used. The curve_contact keyword can be used to indicate the model requires curve
contact as opposed to surface contact.

737

Using Contact Surfaces

 Contact Region

 Contact Pair

 Auto-Contact Tool

The Contact Region

To define contact between two entities, Cubit requires each entity to be defined as a separate contact region. Each
region can be made up of multiple 1D or 2D entities.

Create Contact Region [id] [Name <'name'>] [{Add|On} {Sideset|Surface|Curve|Face|Tri|Edge}
<entity_list>]

Modify Contact Region {id_list|'name'|All} [Name <'name'>] [{Add|Remove}
{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>]

The Contact Pair

create contact pair [id] [name <'name'>] [master contact region <id|'name'>] [slave contact region
<id|'name'>] [friction <value>] [tolerance <value>] [tied {on|OFF}] [General <on|OFF> [Exterior
<on|OFF>]]

modify contact pair {id_list|'name'|all} [name <'name'>] [master contact region <id|'name'>] [slave contact
region <id|'name'>] [friction <value>] [tolerance <value>] [tied {on|OFF}] [General <on|OFF> [Exterior
<on|OFF>]]

A contact pair is composed of two contact regions. One region will be the ‘master’ surface, and the other will be the
‘slave.’ 2D contact regions can not be mixed with 1D contact regions. The friction coefficient can also be included. The
tolerance keyword is currently unused. Use the tied keyword to specify that the contact is to define tied contact between
the two contact regions, essentially “gluing” the parts together. Currently, this option is only available when using the
Abaqus Exporter.

The General keyword can be used to specify general (i.e. global) contact without specifying surfaces/curves to use as
contact pairs. Currently, this keyword is only valid when exporting to Abaqus. If the Exterior keyword is used with the
General keyword, then Abaqus will consider all exterior surfaces when determining contact regions. If the Exterior
keyword is omitted, then the user must provide a master contact region and/or a slave contact region.

Auto-Contact Tool

With the auto-contact tool, Cubit can search for contact pairs and automatically set up all of the necessary contact regions
and contact pairs.

Create Contact Autoselect [{Volume|Surface|Curve} <ids>] [Master Volume <id>] [Maxgap <value>]
[Curve_Contact]

The optional geometry list can be used to limit Cubit’s search to only a subset of entities. If this list is omitted, all bodies in
the model will be searched. The optional master volume keyword can be used to tell Cubit which volume should be used
as the master contact region. If this keyword is omitted, the user will not have control over which volume is the master
region. The maxgap keyword can be used to control how Cubit searches for contact regions. This value is used as the
maximum amount of gap that can exist between two surfaces and be identified as a contact region. If this keyword is
omitted, the geometry tolerance is used. The curve_contact keyword can be used to indicate the model requires curve
contact as opposed to surface contact.

739

Using CFD Boundary Conditions

 Inlet Velocity

 Inlet Pressure

 Inlet Massflow

 Outlet Pressure

 Farfield Pressure

 Symmetry

CUBIT can export models to the Fluent mesh format and supports defining the above CFD boundary conditions. Only the
region on which the BC acts can be defined in CUBIT. The data associated with each boundary condition (pressure,
velocity, mass values) is not defined within CUBIT and must be assigned using a CFD model editor, such as Fluent.

The following shows the commands for creating and modifying CFD boundary conditions. To delete them, use the delete
command (see Miscellaneous Commands).

Inlet Velocity

Create Inletvelocity [id] [name <'name'>] [{Add|On} {Surface} <entity_list>]

Modify Inletvelocity [id] [name <'name'>] [{Add|Remove} {Surface} <entity_list>]

Inlet Pressure

Create Inletpressure [id] [name <'name'>] [{Add|On} {Surface} <entity_list>]

Modify Inletpressure [id] [name <'name'>] [{Add|Remove} {Surface} <entity_list>]

Inlet Massflow

Create Inletmassflow [id] [name <'name'>] [{Add|On} {Surface} <entity_list>]

Modify Inletmassflow [id] [name <'name'>] [{Add|Remove} {Surface} <entity_list>]

Outlet Pressure

Create Outletpressure [id] [name <'name'>] [{Add|On} {Surface} <entity_list>]

Modify Outletpressure [id] [name <'name'>] [{Add|Remove} {Surface} <entity_list>]

Farfield Pressure

Create Farfieldpressure [id] [name <'name'>] [{Add|On} {Surface} <entity_list>]

Modify Farfieldpressure [id] [name <'name'>] [{Add|Remove} {Surface} <entity_list>]

Symmetry

Create Symmetry [id] [name <'name'>] [{Add|On} {Surface} <entity_list>]

Modify Symmetry [id] [name <'name'>] [{Add|Remove} {Surface} <entity_list>]

741

Miscellaneous Boundary Condition Commands

 Delete

 List

 Draw

 Highlight

Delete

The BC delete keyword combination is used to delete boundary conditions. The current list of all entities that can be
deleted using this command were shown in Table 1. Cubit currently has no ‘undo’ command to ‘undelete’ a boundary
condition deletion.

Delete {bc_type} [<id-range>|All]

Delete Boundary Conditions

Every set (and boundary condition within them) can be deleted at once by typing delete boundary conditions. This
command will delete all boundary conditions from your model.

List

The List keyword combination is used to list boundary conditions. The current list of all entities that can be listed using
this command was shown in Table 1. Cubit’s parser can evaluate boundary conditions given the entities they act on. For
example, "List pressure in surface 1" will list all pressures that act on Surface 1.

List {bc_type} [<id-range>]

List Boundary Conditions

Every set (and boundary condition within them) may be listed at once by typing list boundary conditions. CUBIT will list
the number of sets and individual boundary conditions in your model. This command will list the total number of each type
of set and boundary condition, including boundary conditions that are not a part of a BC set.

Draw

Draw {bc_type} {<id-range>|all}[Add]

The draw keyphrase allows a CUBIT user to draw any type of boundary condition. This command will clear the graphics
window of every part of the model except for the selected boundary condition. Using the add keyword will permit multiple
boundary conditions to be drawn at the same time. Any combination of boundary conditions and entities that were valid for
delete and list are also valid for draw.

Highlight

Highlight {bc_type} {<id-range>|All}

The highlight keyphrase allows a CUBIT user to highlight any boundary condition. Highlighting a boundary condition will
turn it bright orange and the vectors defining it will thicken. The highlight command is similar to the draw command.

743

Exporting Sierra Files

Sierra input decks can be exported from Cubit. This capability was added in response to a need to translate Abaqus input
decks to Sierra input decks by importing the Abaqus deck into CUBIT and then immediately exporting the Sierra
deck. Therefore, it is assumed that most of the input deck information has been created outside of CUBIT and that the
user will not interact with it in CUBIT .

The Sierra input deck writer is simply another export format and as a result it can be used for any currently defined mesh
and input deck info defined in Cubit.

The Sierra input deck exporter relies on some of the mesh-specific information that is generated when exporting the
Genesis mesh. Therefore, you should export the Genesis mesh before exporting the Sierra input deck.

745

Defining PARAMS for NASTRAN

List Nastran Exporter Params

Set Nastran Exporter Params Add '<param_string>'

Set Nastran Exporter Params Remove '<param_string>'

Set Nastran Exporter Params Clear

Nastran uses “PARAMS” to define additional instructions and settings in its Bulk Data file. Any string can be defined as a
Nastran Exporter Param, and it will be exported to the Nastran file as “PARAM, <string>”.

747

Finite Element Model

 Exodus Boundary Conditions

 Non-Exodus Boundary Conditions

 Exporting the Finite Element Model

This chapter describes the techniques used to complete the definition of the finite element model. The definitions of the
basic items in an Exodus database are briefly presented, followed by a description of the commands a user would
typically enter to produce a customized finite element problem description, and how to export the finite element model.

749

Exporting an Exodus II File

After defining the element blocks, nodesets and sidesets for a model, the model can be written to the Exodus II file using
the command:

Export [Genesis|Mesh] '<filename>' [dimension {2|3}] [Block <id_list>] [XML '<filename>']

The Genesis or Mesh arguments are optional and both indicate that an Exodus II format will be written. The filename can
be any valid filename. Where a full path is not specified, the file will be written in the current working directory.

The dimension argument is also optional. Most element types have an inherent dimensionality associated with them. For
example, a truss or beam element is inherently 2D while a hex or tetra element is 3D. Without this argument, only the x-y
location of the nodal coordinates of 2D elements are written to the Exodus II file. Using the argument dimension 3, in this
example, permits the full 3D coordinates to be written.

The optional Block argument may also be added to the Export command. Without this argument, all blocks defined in the
current model will be exported to the Exodus II file. This argument permits the user to specify only a portion of the blocks
in the model. The <id_list> may be any valid set of integers corresponding to the Blocks in the current model.

The XML optional argument may also be added to the Export command. When this argument is included and assembly
data exists in the model, an XML file is written which describes the relationship between block IDs in the Exodus II file and
parts in the assembly. See the Parts, Assemblies and Metadata section for details.

Controlling Element and Node ID Maps

Set IDMaps {On|Off}

The Set IDMaps command controls whether the element ID map and node ID map are written to the Exodus II file. Most
analysis and post-processing applications consider these maps to be optional, and many ignore the maps even if they are
present. By default, IDMaps are off. Note that this setting only affects Exodus II output; it has no affect when writing other
mesh file formats. Also note that this setting does not affect whether the element order map is written to the Exodus II file.
The element order map is always included. See the Exodus manual for more information on element and node ID maps.

Exporting a Parallel Mesh for pCAMAL

Export Parallel "<filename>" [Block <id_list>] [Overwrite] [Processor <number>]

The Export Parallel command is used to output an ExodusII file with the boundary mesh or shell for sweepable volumes
that were meshed with set parallel meshing enabled. The options are the same as those for the "export genesis"
command except for the addition of the processor option.

The processor option allows the user to specify the number of processors that will be used to mesh the volume with the
pCAMAL option. This same option exists in the pCAMAL application and is more often used there since the number of
available processors is known then rather than when the output file is created in Cubit.

If the processor option is given, Cubit attempts to balance the number of sweepable volumes to run on n processors by
converting many-to-one sweeps to one-to-one sweeps, subdividing the sweep volume along its sweep direction, or
partitioning the source surface of a one-to-one sweep if the number of source quads is much larger than the number of
layers.

Converting an Exodus II file to ASCII

The Exodus II file format is binary. It is frequently necessary to view the contents of the Exodus II file as plain text. A
publicly available tool known as ncdump can be used to view the contents of an Exodus II file. ncdump is part of the
netCDF library and is currently available from Unidata at the following URL:

http://www.unidata.ucar.edu/

On a UNIX platform, typical use of the ncdump utility is:

ncdump filename.e > filename.txt

http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf
http://www.unidata.ucar.edu/

Cubit 13.2 User Documentation

750

In this format, the ncdump utility will take the Exodus II file, filename.e, and dump the contents to an ASCII file
filename.txt

Another option for converting between binary and ASCII formats of Exodus II files is a utility known as exotxt. Exotxt is
part of the SEACAS tool suite. Contact the Sandia CUBIT development team for a copy of this utility.

Note that the 'stock' ncdump utility should work for most meshes; however, Sandia increases some of the dimensions in
order to handle larger meshes (more element blocks, boundary conditions, variables). The dimensions we increase in
netcdf.h are:

NC_MAX_DIMS (max dimensions per file) from 100 to 65536
NC_MAX_VARS (max variables per file) from 2000 to 524288

Controlling Exodus II Output Precision

By default, exodus files are written with double precision numbers. It may be useful to change this for large meshes to
decrease output file size. This can be done using the following command:

Set Exodus Single Precision [On|Off]

This command toggles the Exodus output file between single precision (floats) and double precision.

Large Exodus Format

The Set Large Exodus command enables the large exodus file setting to create a model that can store individual
datasets larger than 2 gigabytes. This modifies the internal storage used by ExodusII and also puts the underlying netcdf
file into the "64-bit offset" mode.

Set Large Exodus [On|OFF]

http://endo.sandia.gov/seacas

751

Instancing Parts with ABAQUS

The ABAQUS file format allows users to instance a mesh multiple times. An example of this would be to create a mesh of
a single bolt, but instance the bolt mesh several times in the ABAQUS model file to generate multiple bolts.

To create an ABAQUS file with instanced parts, use the following syntax:

Export Abaqus <’filename’> [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>] [BCSet <id_list>]
[Instance Block <id_list> [Source_csys <id>] [Target_csys <id_list>] [Overwrite] [Cubitids] [Everything]

Any block defined in Cubit can be instanced n number of times in the ABAQUS file. To instance a block, a source
coordinate system and a target coordinate system (where the mesh will be translated and rotated to) need to be defined.
If no source coordinate system is given in the command, the default (global) coordinate system is used. The instance
keyword can be used as many times as needed.

Note: By default, the Abaqus exporter writes 6 decimal places. The command "set Abaqus precision <n>" can be used
to change the number of decimal places written.

753

Exporting Fluent Grid Files

Geometry can be exported from Cubit to the Fluent .msh format. This format can be used to exchange grid information
between .msh compatible programs including Fluent, GAMBIT, and TGrid. The command used to export the mesh
geometry is:

Export Fluent '<filename>' [Surface <id_list>|Volume <id_list>] [Overwrite]

The filename should be enclosed in either single or double quotes. By convention, the file extension .msh is applied to
grid files. The extension should be included in the filename section. Other file extensions such as .cas may be used, but
they cannot be guaranteed to be compatible with either GAMBIT or TGrid.

In order to guarantee that the grid file will be compatible with Fluent, all bodies must be merged (See Geometry Merging).
Several types of Fluent boundary condition zones are now implemented in Cubit. They are:

 axis

 exhaust fan

 fan

 inlet vent

 intake fan

 interface

 interior

 mass flow inlet

 outflow

 outlet vent

 periodic

 periodic shadow

 porous jump

 pressure far field

 pressure inlet

 pressure outlet

 radiator

 symmetry

 velocity inlet

 wall

Boundary condition zones created in two different ways. The first way involves user-defined mesh groups consisting only
of quads (3D), triangles (3D), or element edges (2D) (See Geometry Groups). The second way involves sidesets.
Specifying a boundary condition consists of selecting a user-defined mesh group or a sideset, or a surface. Selecting a
surface automatically assigns the boundary condition to the sideset associated with that surface. The boundary condition
type is specified and is either given a name or an id (See Using CFD Boundary Conditions). Groups or sidesets of mixed
type (e.g. hexes and faces) will not be exported. All surfaces not set to one of the first seven boundary condition types are
automatically set to type ‘wall’. The various parameters for each of the boundary condition types must be set within either
Fluent or GAMBIT.

Cell zones are automatically created for 3D meshes containing blocks. Blocks must contain entire and continuous
volumes in order to create a valid grid. In 2D models, the cell zones are created from sidesets containing only quads or
tris. In order to create a valid grid, these sidesets must contain whole, continuous surfaces. All cell zones are by default
set to type ‘fluid.’

If no entities are specified, the entire model is exported. In order to export selected entities, the types ‘volume’ and
‘surface’ can be specified. In 2D cases, use ‘surface’ while in the 3D case use ‘volume.’

The exporter can handle higher-order elements, although Fluent will convert the elements to first-order upon import.

755

Transforming Mesh Coordinates

A mesh can be scaled and transformed to a new location as it is written to or read from an Exodus file. To transform a
mesh during import or export use the following command:

Transform Mesh {Input|Output}
[Scale <xyz_factor>]
[Scale <x_factor> <y_factor> <z_factor>]]
[Scale {X|Y|Z} <factor>]
[Translate <dx> [<dy> [<dz>]]]
[Translate {X|Y|Z} <distance>]
[Rotate <degrees> about {X|Y|Z}]
[Reset]

This command may be repeated any number of times using any number of options. Transform commands are cumulative,
added to the effect of previous transforms. If more than one transformation is entered in the same command,
transformations are applied in the order they appear in the command.

To clear a transformation matrix, use the Reset option:

Transform Mesh {Input|Output} Reset

Mesh input and output transformations are also cleared when you reset the entire model using the Reset command.

Transforming a mesh during output does not change the position of the mesh within CUBIT. It only changes the nodal
positions written to the Exodus file. Nodal positions may be changed within CUBIT by transforming the body that contains
the mesh. See Geometry Transforms for information on how to apply transformations to a Body.

Transforming a mesh during input does change the position of the mesh with CUBIT. The file being read is not modified.

Transformations applied during mesh input are independent of transformations applied during mesh output.

The following example generates a simple mesh, writes the mesh with its coordinates scaled by a factor of 2, and then re-
imports that mesh, restoring the scaling to what it originally was in CUBIT.

brick x 10
volume 1 interval 4
mesh vol 1
transform mesh output scale 2
export mesh 'temp.exo'
delete mesh
transform mesh input scale .5
import mesh 'temp.exo'

See Geometry Transforms for information on how to apply transformations to a Body.

See Nodeset and Nodeset Repositioning

See Importing a Mesh

See Mesh Based Geometry

757

How to Use the ITEM Wizard

The ITEM Workflow

The Immersive Topology Environment for Meshing (ITEM) is a wizard-like environment that guides the user through the
mesh generation process from geometry definition to export. ITEM was designed to provide a step-by-step set of tools to
help new users generate a mesh with very little previous knowledge of the CUBIT program. But ITEM is also flexible
enough to accomodate advanced users who want to use a more iterative approach, or who just want to use ITEM for a
specific tool or panel.

The main ITEM task page is shown below. To access this page, click on the "wizard hat" icon from the Power Tools
window.

Main ITEM Task Panel

The main item tasks are shown both in the text window, and also along the sidebar. The icons in the sidebar are available
from any of the ITEM panels. It is acceptable to jump to different tasks during the process, although beginning users may
just want to follow the steps in order. To get to the main task page, click on the Task icon on the sidebar during any step
in the process.

Many meshing tasks require an iterative approach to the mesh generation process. For your convenience, if you do click
on one of the task buttons from a different panel, it will take you to the last visited panel in that section. For example, if you
are on the mesh generation page, and you click on the prepare geometry section, it will take you to the last page you
visited in the prepare geometry section.

There are two help links at the bottom of the main task page. The first link will open this document which describes the
general ITEM process and how to use the panels. This page is only accessible from the main task page. The second link
opens the main ITEM documentation which describes each process in the ITEM mesh generation process in detail. This
document can be accessed from any of the ITEM panels.

Cubit 13.2 User Documentation

758

To proceed through the ITEM panels you must either click on a task or click on the "Done" button at the bottom of each
page. There is no "Back" button on the ITEM interface. But in most cases, clicking the "Done" button works like a "Back"
button.

Using an ITEM Panel

The item panels are designed to be self-explanatory, with plenty of documentation on each page, and access to more
help if needed. However, it does help to be generally familiar with the main types of panels.

Task panels that link to other ITEM panels

Some ITEM panels provide a list of tasks that link to other ITEM panels. Sometimes the tasks are designed to be
completed in sequential or iterative fashion. In that case, you will be returned to the task page after selecting done on
each sub-panel where you can select the next task. The Prepare Geometry panel is an example of this case. Each of the
tasks with a warning flag should be completed. As you return to this panel, you may need to run the diagnostics again,
and possibly even revisit previous task pages.

In other cases, the list of tasks is a presents a list of choices, from which you will only select one option. The Import
Geometry Page shown below is such an example. It gives a list of different geometry import/creation options and you just
select one of the alternatives.

Prepare Geometry
ITEM Panel

Import Geometry
ITEM Panel

Task Panels that Link to Control Panels

A few of the ITEM task panels will provide links to existing control panel topics. Clicking on a link from one of these panels
will NOT open a new panel, but will open the corresponding control panel. The Define Boundary Conditions page is an
example of this type of panel.

How to Use the ITEM Wizard

759

Define Boundary Conditions Panel

Set-up Panels

A set-up panel is used to provide input or set-up options for your model. The most prominent set-up panel is the Set-up
FEA Model page which is used to define mesh budget, element type, and element size. Another set-up page is the Define
Metrics page under the Validate Mesh task. This panel is used to define quality metrics for your model. These panels
provide useful information for the diagnostics used in other panels.

Cubit 13.2 User Documentation

760

Setup FEA Model Panel

Diagnostic Panels

The most useful type of ITEM panel is the diagnostic panel. These panels each focus on a specific diagnostic such as
invalid topology, small features, blend surfaces, overlapping surfaces, or meshability. Most of theses panels contain some
or all of the following features.

 Diagnostic Button - Clicking on this button will run a series of tests on the model.

 Output Window - Displays the results of the diagnostics and lists entities with problems. Includes a right-click
menu with visualization and other options.

 Automatically Repair Button - Tries to solve the problems automatically.

 Solution Window - Presents a list of specific solutions based on the entity you select in the output window.
This window also contains several right-click context menu items for each solution, including a "More
Information" button which will open the documentation to information about that specific task. Another useful
feature of the solution window is that in most cases clicking on one of the solutions will preview that option in
the graphics window.

 Execute Button - Executes the solution selected.

 Additional Options - Sometimes you won't see your desired solution in the list. Additional solutions with brief
descriptions are provided at the bottom of the panel. Clicking on these links will open the corresponding control
panel.

How to Use the ITEM Wizard

761

 More Information Link - Opens a page describing the diagnostics and solutions used for this panel.

The Small Features Panel shows an example diagnostic panel in ITEM.

Remove Small Features Diagnostic Panel

Cubit 13.2 User Documentation

762

Undo Button

The Undo button allows you to reverse the most recent command. To enable the Undo button, click on the "Enable Undo"
option from the Edit menu. The undo button works by saving information about your model after each step. For large or
complex models, this can be time consuming, so you may need to disable the undo feature. Additionally, not all
commands are enabled for undo. Many of the graphics and meshing commands, and various default settings are not
included. Within ITEM, many commands are bundled into a single button click. Clicking undo will attempt to reverse all of
the executed commands. See the command line window for the results of the undo command.

Magic Mesh Button

This button, shown at the top of each ITEM panel, provides the user with the opportunity to use Cubit’s internal
automation algorithms to generate a mesh. In addition to simply issuing a mesh command, it will attempt to execute the
following steps.

 Geometry Cleanup: Check for small or ill-defined geometry and automatically resolve it

 Auto-scheme: Automatically set meshing schemes and select sources and targets for hex meshing

 Decomposition: If hex meshing, attempt to decompose the volume to admit a sweep or mapped mesh

 Force Sweeps: For almost-sweepable geometry, modify the linking surfaces to force a sweep

 Imprint/Merge: For assemblies, imprint adjacent volumes and merge common surfaces

 Overlap check: Check for any remaining overlapping volumes and attempt to resolve merge problems

 Mesh sizing: For tetrahedral meshing, automatically define a sizing function based on geometry characteristics

 Interval Matching: For hex meshing, coordinate the assignment of curve intervals.

 Sweep grouping: Determine an appropriate order to mesh volumes to reduce dependencies

 Mesh: Perform the mesh operation volume(s)

 Mesh Quality: Check mesh quality and locally optimize if necessary

If for any reason, Cubit is unable to complete these steps without further user intervention, the process will stop and the
user will directed to continue with the ITEM workflow. For simple geometries, executing the magic mesh button at this
phase of the workflow may be all that is necessary to completely define a good quality mesh. For other more complex
geometry, considerable user intervention may be required.

The magic mesh button may be executed at any time during the ITEM workflow by selecting the button at the top right
corner of the ITEM panel. Once the user has visited the various panels of the ITEM interface to provide user intervention,
the automatic execution of the appropriate operations will not longer be attempted.

Getting Help

There are several ways to get help from within the ITEM interface. Most of these have already been discussed, but they
are listed here again for reference:

 How to Use ITEM - This document which is available only from the main task page

 Guide to Meshing in ITEM - A document which describes the ITEM workflow, and how to use the diagnostics
on each page. This is accessible from each page using the More Information links.

 Individual help topics for specific solutions - Opens the documentation to help for each specific solution
topic. This is accessible from the right-click menu when a command is selected in the solutions window.

 Documentation included on panels - Many of the panels contain brief descriptions and explanations to
describe the features and tools on that panel.

763

Defining the Geometric Model

Various methods may be used to define a geometric model. In most cases, a solid model is created in a commercial CAD
tool such as Pro/Engineer or Solidworks. It can also be generated natively within Cubit using geometry commands. One of
the most time consuming tasks in developing an analysis model is in dealing with geometric anomalies. Carefully
considering how the model is constructed and what format the model will be defined in can eliminate many potential
problems downstream in the model creation workflow. The following describes the various solutions for defining geometry
within Cubit along with their pros and cons:

 Geometry Formats

 Creating Your Own Geometry

 Scripting

 CUB Files

Geometry Formats

Cubit can use one of three different commercial geometry representations, ACIS (.sat, .sab), Pro/E (.g) or Catia (.cat). It
may also use a facetted format (MBG) that is developed in-house at Sandia. When a model of any of these formats is
imported, Cubit uses the appropriate third party geometry kernel to directly manage and evaluate the geometry. Since the
geometry is considered “native” when any of these formats is used, no translation step is required.

Since commercial solid modelers do not necessarily agree on formats and representations, using a translation process to
convert a non-native format to a native format, can introduce errors in the geometry. While this in itself may not be a
show-stopper, it can frequently add hours to an otherwise simple process while the user is forced to clean up dirty
geometry. Neutral formats such as STEP and IGES are common in the CAE industry. They can often be an ideal solution
for representing the analysis solid model. In Cubit, when importing a neutral format, it is automatically translated to the
ACIS format. The user should be careful however in selecting these formats as commercial solid modeling engines
frequently interpret standard specifications for these formats in different ways sometimes resulting in unusual results.
Wherever possible a native format should be used.

Native geometry kernels provide the most accurate way for transferring data between solid-model based applications.
Since these geometry kernels must be licensed and incorporated into the Cubit distribution separately, one drawback is
the additional licensing and cost for maintaining these kernels. Cubit is currently able to provide licenses for ACIS and
Pro/E kernels for government and academic use. Additional licensing arrangements may be required for Catia or for any
commercial use.

Creating your own geometry

Cubit offers a wide variety of tools for creating geometry natively. The advantage to this is the ability to control the
geometry creation process without the need for another CAD tool. Although Cubit is not designed to be a CAD tool it does
provide many tools for both bottom-up and primitive creation.

Bottom-up creation refers to the process of building geometry from its basic components starting with vertices, curves,
surfaces and then volumes. This process can be somewhat tedious, but is often useful for generating auxiliary geometry
once a CAD model has been imported.

Primitive creation refers to the various operations for generating geometric primitives such as bricks, spheres, cylinders
and cones. Once defined, operations for repositioning the objects and performing Boolean operations between them may
be used. Relatively complex models may be generated using this approach.

Scripting

One advantage to generating your own geometry within Cubit is the ability to parameterize the construction of the model.
Cubit utilizes a rich command language that can be stored as a script or journal file. Parameters representing dimensions
of objects may be defined in the script and conveniently adjusted to update the geometry representation. For more
ambitious users, Cubit also has the ability to interpret python scripts, allowing a high degree of customization that can
employ the full capability of the python scripting language.

It should be noted that when using Cubit, commands are automatically echoed to an external temporary journal file on
disk and to the history window. Observing these commands is a good way to become familiar with Cubit’s internal
command language. Copying and pasting selected commands to a text editor is an ideal method for building a
parameterized journal file. Journal files may be built up and played back to reproduce the entire process of building an
analysis model.

Cubit 13.2 User Documentation

764

CUB Files

A CUB file is Cubit’s database file. You may want to think of it as a snap-shot of the current state of the model. While
journal files record the process for creating the model, a CUB file stores only the end state. It can include both geometry in
its native format and any mesh information as well as attributes and boundary condition information. Restoring a CUB file
will write over any existing data you currently have defined.

765

Setting up the Finite Element Model

Once the geometry to be meshed has been imported or created, the first step to defining the mesh is to set up the model.
Basic parameters that are needed through the rest of the ITEM workflow are defined at this stage. Subsequent
diagnostics and workflow may change based on how the model is initially set up.

Element Shape

Either a hexahedral or tetrahedral element shape may be selected. The meshing algorithm used to mesh the volumes will
change based on this setting. Specific element characteristics such as the order of the element (i.e. TET10, HEX20) may
be specified at a later time. The steps that will be displayed in the workflow will change based on the element type that is
selected.

FEA Model Size

The number of elements or average size of the elements is an important aspect of defining your analysis model.
Geometric features that are considerably smaller than the average element size, in most cases should be ignored since
the mesh resolution will not be able to adequately capture them. Defining the element size at this point in the workflow
permits subsequent diagnostic tests and operations to have a relative measure of what is “small”. More detailed sizing
attributes such as biasing and geometry-adaptive sizing may be defined later in the ITEM workflow.

One of three different mechanisms may be used to define the size, element budget, element size and mesh density. Each
of these values is dependent on the other. As a result, changing one value will automatically change the other.

 Element Budget: This value is an approximate number of elements that should be generated in the entire
model. The element budget for hexahedra, Nhex, is related to the element size, esize, by the following
relationship:

 Where Vmodel is the geometric volume of the solid model. The element budget for tetrahedra vs. hexahedra is
approximately 1:7. That is, for an equivalent edge length, a tetrahedral mesh will contain roughly seven times as
many elements as a hexahedral mesh.

 Element Size: Element budget and mesh density are indirect methods for setting the element size, esize. This
value can also be set explicitly. It represents the approximate average edge length of elements in the model.
This size will determine the relative definition of small for subsequent diagnostic tests and will be used to set the
mesh size the meshing algorithms will use.

 Mesh Density: The mesh density is represented by an integer between 1 and 10, where 1 is the finest resolution
and 10 is the coarsest. It is a heuristic measure of how fine of a mesh will be generated and permits the user to
indirectly set an element size without explicitly defining a real value. In most cases, the mesh density, md is
related to the element size, esize by the following heuristic relationship:

Where Vmax is the of the geometric volume of the largest volume in the solid model. Changing the target mesh
density will display a preview of the approximate nodal spacing on the curves of the model in the graphics window.

767

Bad geometry representation

As a result of translation errors between CAD representations, errors or differences in the way the geometry is interpreted
may occur. Depending on the severity of the problem, sometimes a mesh can be generated even with a less-than perfect
geometric representation, however, in most cases, these should be resolved before meshing.

Detecting Invalid Geometry

In most cases, bad or invalid topology or geometry definition comes from problems which arise in the CAD translation
process. CUBIT’s main geometry kernel, ACIS is used to represent the model if it has been imported using an IGES or
STEP format. Translation to and from these neutral formats is frequently the cause of bad geometry. ITEM will use the
geometry validation procedures built into the ACIS kernel to detect if there is any bad geometry and will list the entities
that may be causing a problem.

Since the validation procedures are specific to ACIS, models that may have been imported from another native format
such as Pro/E will not provide this diagnostic. Although this may seem like a severe limitation, importing native formats
rarely have bad geometry, since no translation process is necessary.

It is good practice to always check your model for bad geometry before proceeding to other geometry or meshing
operations. In some cases, if a webcut or meshing operation fails, the cause is an invalid geometric definition that has not
been adequately healed. Resolving bad geometry problems up front, in most cases is essential to obtaining a mesh. On
the other hand, if the location of the bad geometry in the model is such that it will not effect subsequent Boolean or
decomposition operations, there may be a chance that completely resolving bad geometry is not necessary. Simply
ignoring bad geometry that cannot be easily repaired with automatic procedures may be a reasonable solution, provided
the user is aware of the potential limitations.

Resolving Invalid Geometry

To resolve invalid geometry, ITEM uses the heal procedure built into the ACIS geometry kernel. In almost all cases, this is
a fully automatic procedure. Simply selecting the automatic repair button will make the appropriate adjustments to the
geometry. This can be done one volume at a time by healing the owning volume, or by healing the full model all at once. If
healing was successful, No problems detected should be displayed.

If auto repair does not successfully repair the geometry, you may want to try additional options available in Cubit for
healing. See the Cubit documentation for a complete description of additional healing options.

769

Small details in the model

The small feature removal area of ITEM focuses on identifying and removing small features in the model that will either
inhibit meshing or force excessive mesh resolution near the small feature. Small features may result from translating
models from one format to another or may be intentional design features. Regardless of the origin small features must
often be removed in order to generate a high quality mesh.

ITEM will recognize small features that fall in four classifications:

1. small curves
2. small surfaces
3. narrow surfaces
4. surfaces with narrow regions

These operations may involve either real, virtual or a combination of both types of operations to remove these features. A
virtual operation is one in which does not modify the CAD model, but rather modifies an overlay topology on the original
CAD model. Real operations, on the other hand directly modify the CAD model. Where real operations are provided by
the solid modeling kernel upon which CUBIT is built, virtual operations are provided by CUBIT's CGM (Tautges, 00)
module and are implemented independently of the solid modeling kernel. The following describes the diagnostics for
finding each of the four classifications of small features and the methods for removing them.

Small Curves

Diagnostic: Small curves are found by simply comparing each curve length in the model to a user-specified characteristic

small curve size. A default epsilon () is automatically calculated as 10 percent of the user specified mesh size, but can be
overridden by the user.

Solutions: ITEM provides three different solutions for eliminating small curves from the model. The first solution uses a
virtual operation to composite surfaces. Two surfaces near the small curve can often be composited together to eliminate
the small curve as shown in Figure 1(a).

The second solution for eliminating small curves is the collapse curve operation. This operation combines partitioning and
compositing of surfaces near the small curve to generate a topology that is similar to pinching the two ends of the curve
together into a single point. The partitioning can be done either as a real or virtual operation. Figure 1(b) illustrates the
collapse curve operation.

The third solution for eliminating small curves is the remove topology operation. This operation can be thought of as
cutting out an area around the small curve and then reconstructing the surfaces and curves in the cut-out region so that
the small curves no longer exist. (Clark, 07) provides a detailed description of the remove topology operation. This
operation has more impact on the actual geometry of the model because it redefines surfaces and curves in the vicinity of
a small curve. The reconstruction of curves and surfaces is done using real operations followed by composites to remove
extra topology introduced during the operation. Figure 1(c) shows the results using the remove topology operation.

Figure 1. Three operators used for removing small curves (a) composite; (b) collapse curve; (c) remove topology

Cubit 13.2 User Documentation

770

Small and Narrow Surfaces

ITEM also addresses the problem of small and narrow surfaces. Both are dealt with in a similar manner and are described
here.

Diagnostic: Small surfaces are found by comparing the surface area with a characteristic small area. The characteristic

small area is defined simply as the characteristic small curve length squared or
2
.

Narrow surfaces are distinguished from surfaces with narrow regions by the characteristic that the latter can be split such
that the narrow region is separated from the rest of the surface. Narrow surfaces are themselves a narrow region and no
further splits can be done to separate the narrow region. Figure 2 shows examples of each. ITEM provides the option to
split off the narrow regions, subdividing the surface so the narrow surfaces can be dealt with independently.

Narrow regions/surfaces are also recognized using the characteristic value of . The distance, di from the endpoints of

each curve in the surface to the other curves in the surface are computed and compared to . When di< other points on
the curve are sampled to identify the beginning and end of the narrow region. If the narrow region encompasses the entire
surface, the surface is classified as a narrow surface. If the region contains only a portion of the surface, it is classified as
a surface with a narrow region.

Figure 2. Two cases illustrating the difference between surfaces with narrow regions and narrow surfaces

Solutions: ITEM provides four different solutions for eliminating small and narrow surfaces from the model. The first
solution uses the regularize operation. Regularize is a real operation provided by the solid modeling kernel that removes
unnecessary/redundant topology in the model. In many cases a small/narrow surface's definition may be the same as a
surface next to it and therefore the curve between them is not necessary and can be regularized out. An example of
regularizing a small/narrow surface out is shown in Figure 3.

Small details in the model

771

Figure 3. When the small surface’s underlying geometric definition is the same as a neighbor the curve between
them can be regularized out.

The second solution for removing small/narrow surfaces uses the remove operation. Remove is also a real operation
provided by the solid modeling kernel. However, it differs from regularize in that it doesn't require the neighboring
surface(s) to have the same geometric definition. Instead the remove operation removes the specified surface from the
model and then attempts to extend and intersect adjacent surfaces to close the volume. An example of using the remove
solution is shown in Figure 4.

Figure 4. The remove operation extends an adjacent surface to remove a small surface

The third solution for removing small/narrow surfaces uses the virtual composite operation to composite the small surface
with one of its neighbors. This is very similar to the use of composites for removing small curves. An example is shown in
Figure 5.

Figure 5. Composite solution for removing a narrow surface

The final solution for removing small/narrow surfaces uses the remove topology operation (Clark, 07). The remove
topology operation behaves the same as when used for removing small curves in that it cuts out the area of the model
around the small/narrow surface and replaces it with a simplified topology. In the case of a small surface where all of the
curves on the surface are smaller than the characteristic small curve length, the small surface is replaced by a single
vertex. In the case of a narrow surface where the surface is longer than the characteristic small curve length in one of its
directions, the surface is replaced with a curve. The remove topology operation can be thought of as a local dimensional
reduction to simplify the topology. The remove topology operation can also be used to remove networks of small/narrow
surfaces in a similar fashion. Examples of using the remove topology solution to remove small/narrow surfaces are shown
in Figures 6 and Figure 7.

Cubit 13.2 User Documentation

772

Figure 6. Remove topology solution for removing a narrow surface

Figure 7.Remove topology solution for removing a network of narrow surfaces

773

Contact Surfaces

A contact surface is two surfaces which overlap, but are not merged. In a physical sense, this could represent two
surfaces which come in contact with each other, as opposed to two surfaces which merely form a partition for meshing
purposes. It is easy using the ITEM interface to identify and select contact surfaces in your model. Simply select surfaces
in the graphics window and press the "Add" button on the ITEM interface. The contact surfaces will be shown in the
window.

To remove a contact surface from the list, right click on the surface and select "Not a Contact Surface" from the context
menu to remove that specific surface, or "Remove all contact surfaces" to remove all contact surfaces. Several other
visualization tools are also available from the context menu including Zoom, Fly-in, Draw, List, Locate, etc.

775

Resolving Problems with Conformal Assemblies

Where more than a single geometric volume is to be modeled, a variety of common problems may arise that must be
resolved prior to mesh generation. These are typically a result of misaligned volumes defined in the CAD package or
problems arising from the imprint and merge operations in the meshing package. ITEM addresses some of the same
problems by allowing the option for user interaction as well as full automation using the CAD geometry representation.
The proposed environment utilizes two main diagnostics to detect potential problems: the misalignment check, and the
overlapping surfaces check. Associated with both of these are solutions that are specific to the entity and from which the
user may preview and select to resolve the problem.

Resolving Misaligned Volumes with Manage Gaps/Overlaps Tool

The Manage Gaps/Overlaps Tool within the geometry cleanup area of ITEM allows the user to quickly search an
assembly for gaps and overlaps between assembly components. The search criteria for gaps is a tolerance specified by
the user and defines the maximum gap between components to look for. A gap angle can also be specified which
specifies how "parallel" two entities must be to be considered in the gap check. The overlap check simply asks Cubit to
see if any of the volumes are overlapping and doesn't require a tolerance from the user. The results are displayed in a list
of pairs of volumes. The user can right-click on these pairs and tell Cubit to draw the pair. A useful graphical depiction of
the gap or overlap will be displayed. When the user clicks on a pair in the list a set of solutions for fixing the gap or overlap
will also be displayed below in a separate list. The user can select a solution and click the "Execute" button to execute it.
The gap solutions are either a surface "tweak" operation and the overlap solution can be either a tweak operation or a
Boolean operation to remove the overlap. This tool provides a powerful way to quickly work through the assembly and fix
gaps and overlaps.

Cubit 13.2 User Documentation

776

Resolving Misaligned Volumes with Near Coincident Vertex
Checks

The near coincident vertex check or misalignment check is used to diagnose possible misalignments between adjacent
volumes. This diagnostic is performed prior to the imprint operation in order to reduce the sliver surfaces and other
anomalies which can occur as a result of imprinting misaligned volumes. With this diagnostic, the distance between pairs
of vertices on different volumes are measured and flagged when they are just beyond the merge tolerance. The merge
tolerance, T, is the maximum distance at which the geometry kernel will consider the vertices the same entity. A
secondary tolerance, Ts, is defined where Ts > T which is used for determining which pairs of vertices may also be
considered for merging. Pairs of vertices whose distance, d is T < d > Ts are presented to the user, indicating areas in the
model that may need to be realigned. The misalignment check should also detect small distances between vertices and
curves on adjacent volumes.

When pairs of vertices are found that are slightly out of tolerance, the current solution is to move one of the surfaces
containing one vertex of the pair to another surface containing the other vertex in the pair. Moving or extending a surface
is known as tweaking.

Resolving Problems with Conformal Assemblies

777

Figure 1. Example of a solution generated to correct misaligned volumes using the tweak operator

The result of this procedure will be a list of possible solutions that will be presented to the users. They can then
graphically preview the solutions and select the one that is most appropriate to correct the problem.

Correcting Merge Problems

The merge operation is usually performed immediately following imprinting and is also subject to occasional tolerance
problems. In spite of correcting misalignments in the volume, the geometry kernel may still miss merging surfaces that
may occupy the same space on adjacent volumes. If volumes in an assembly are not correctly merged, the subsequent
meshes generated on the volumes will not be conformal. As a result, it is vital that all merging issues be resolved prior to
meshing. The ITEM environment provides a diagnostic and several solutions for addressing these issues.

An overlapping surface check is performed to diagnose the failed sharing of topology between adjacent volumes. In
contrast to the misalignment check, the check for overlapping surfaces is performed after the imprinting and merging
operations. The overlapping surface check will measure the distance between surfaces on neighboring volumes to ensure
that they are greater than the merge tolerance apart. Pairs of surfaces that failed to merge and that are closer than the
merge tolerance are flagged and displayed to the user as potential problems.

A test for nonmanifold curves and vertices is also performed after imprinting and merging to find geometry that was not
merged correctly. The test for nonmanifold curves is looking for curves that are merged, but do not share merged
surfaces. Similarly, the test for nonmanifold vertices is looking for merged vertices that do not share any merged curves.
Another test for floating volumes is performed to identify volumes that are not attached to any other entities.

If imprinting and merging has been performed and a subsequent overlapping surface check finds overlapping surface
pairs, the user may be offered three different options for correcting the problem: force merge, tolerant imprint of vertex
locations and tolerant imprint of curves.

If the topology for both surfaces in the pair is identical, the force merge operation can generally be utilized. The merge
operation will remove one of the surface definitions in order to share a common surface between two adjacent volumes.
Normally this is done only after topology and geometry have been determined to be identical, however the force merge
will bypass the geometry criteria and perform the merge. Figure 2 shows a simple example where the bounding vertices
are identical but the surface definitions are slightly different so that the merge operation fails. Force merge in this case
would be an ideal choice.

Figure 2. Example where the merge operation will fail, but force merge will be successful

The force merge operation is presented as a solution where a pair of overlapping surfaces are detected and if any of the
following criteria are satisfied:

Cubit 13.2 User Documentation

778

 All curves of both surfaces are merged

 All vertices between the two surfaces are merged and all the curves are coincident to within 1% of their length
or 0.005, whichever is larger

 All the curves of both surfaces are either merged or overlapping and a vertex of any curve of one surface that
will imprint onto any other curve of the other surface cannot be identified

 At least one curve of one surface may be imprinted onto the other and if both surfaces have an equal number of
curves and vertices, and the overlapping area between the 2 surfaces is more than 99% of the area of each
surface. This situation generally prevents generating sliver surfaces

 At least one vertex of surface B may be imprinted onto surface A, and if both surfaces have equal number of
curves and vertices, and the vertex(s) of surface B to imprint onto surface A lies too close to any vertices of
surface A

 All the curves of both surfaces are either merged or overlapping and no vertices of any curve of surface A will
imprint onto any other curve of surface B

Individual vertices may need to be imprinted in order to accomplish a successful merge. The solution of imprinting a
position x,y,z onto surface A or B is presented to the user if the following criteria is met

 Curves between the two surfaces overlap within tolerance, and a vertex of curve A lies within tolerance to curve
B and outside tolerance to any vertex of curve B. Tolerance is 0.5% of the length of the smaller of the 2 curves
or the merge tolerance (0.0005), whichever is greater.

Figure 3. Curve on surface A was not imprinted on surface B due to tolerance mismatch. Solution is defined to
detect and imprint the curve

In some cases one or more curves may not have been correctly imprinted onto an overlapping surface which may be
preventing merging. This may again be the result of a tolerance mismatch in the CAD translation. If this situation is
detected a tolerant imprint operation may be performed which will attempt to imprint the curve onto the adjacent volume.
Figure 3 shows an example where a curve on surface A is forced to imprint onto surface B using tolerant imprint, because
it did not imprint during normal imprinting. The solution of a curve of surface A to be imprinted onto surface B may be
presented to the user if all 3 of the following conditions are satisfied:

 There are no positions to imprint onto the owning volume of either surface

 Curve of surface A is not overlapping another curve of surface B

 Curve of surface A passes tests to ensure that it is really ON surface B

779

Determining an Appropriate Merge Tolerance

Determining the appropriate merge tolerance for a model can be essential for creating conformal meshes on some
models. The merge tolerance is a value that identifies at which distance different entities can be considered the same
entity. Many entities will fail to merge because of widespread geometry tolerance or alignment problems that are either too
difficult, time-consuming or even impossible to resolve. Specifying a merge tolerance that is larger than these small
discrepancies allows the user to account for geometry that is misaligned. But specifying a merge tolerance that is too
large can combine features the user wishes to keep, and possibly corrupt the model. The ideal merge tolerance should be
smaller than the smallest feature, but larger than the biggest gap or misalignment that cannot be resolved. Since it is not
always a simple task to determine either of these features, the ITEM workflow provides a diagnostic tool designed to
guide the user to find the small misalignments that may lead to merge problems. It then presents possible solutions to fix
these problems, or the ability to change the merge tolerance to ignore them.

Opening the Merge Tolerance Panel

To open the merge tolerance tool from the ITEM Wizard, click on Prepare Geometry->Connect Volumes->Imprint and
Merge. Then click on the button with three dots next to the Merge Tolerance input field.

Figure 1. How to open the merge tolerance panel

The merge tolerance panel is shown in the following image.

Cubit 13.2 User Documentation

780

Figure 2. The Merge Tolerance Diagnostic Panel

Estimating Merge Tolerance with Small Feature Size

Since the merge tolerance must be smaller than the smallest feature in the mesh, the best place to start is by finding the
smallest feature and using that value to create an estimate for the merge tolerance. To find the smallest feature, click on
the small button with three dots next to the input box for Small Features.

Note: The small feature checks will not find misalignments between different volumes- it will only list vertex-vertex pairs
and vertex-curve pairs on the same volume. The small feature size is used on the merge tolerance panel to find an initial
estimate for the merge tolerance.

After determining the smallest feature size, click on the Estimate Merge Tolerance button to come up with a rough
estimate for the merge tolerance. It is important to note that this is only an estimate. After an initial estimate is made, it
can be fine tuned using the Fine Tune Merge Tolerance tool.

Determining an Appropriate Merge Tolerance

781

Fine Tuning the Merge Tolerance

In the fine tune merge tolerance area, the user may search for vertex-vertex, vertex-curve, and vertex-surface pairs that
are within user-specified ranges. This includes checks between entities on different volumes. This allows the user to
determine if the merge tolerance he/she has determined will capture all of the merges he/she intends. The user can
check/uncheck which pairs to search for and what range to look in. The results from the search will show up in the window
below and the user can select the results, right click on it, and choose Draw with Volumes to zoom into that pair of
features. For vertex-vertex pairs there may be tweak solutions presented to the user in the list box below for fixing the
problems.

Setting the Merge Tolerance

The Apply button next to Estimated Merge Tolerance edit field is used to take the estimated merge tolerance and use it to
set the merge tolerance in CUBIT by issuing the Merge Tolerance <val> command.

783

Determining the Small Feature Size

The smallest feature size is a value that represents the size of the smallest detail in the volume that the user wants to
include in the final mesh. Any details that are smaller than this size should be removed from the model before completing
the other steps of the meshing process. Small details can result from a variety of different reasons. Sometimes the model
contains excessive detail that the user does not need. Other times, small features such as extra curves are created during
import to account for a mismatching topology. Still other times, the small features are the result of webcutting or other
decomposition methods. Ideally there should be a minimum threshold at which the user decides to keep all features
above the given size, and remove the rest. The smallest feature size is used for other diagnostic tools, so selecting an
appropriate feature size is important for other steps in the mesh generation process.

After the Find Small Features button is pressed, Cubit lists the 10 closests vertex-vertex and vertex-curve pairs. The
pairs are listed in the display window from smallest to largest. To see more pairs, change the search parameter in the
input box. To visualize each pair, the user can right click on a feature and select the Draw Pair with Volumes option. After
determining the smallest feature size the user can enter it in the edit field at the bottom of the panel and it will be used in
later calculations. The user can also right click on one of the pairs in the list and choose Use as smallest feature to
populate the edit field at the bottom of the panel.

Why doesn’t the list include small gaps between volumes?

The smallest feature check is only searching over vertex-vertex and vertex-curve pairs in the same volume. Small gaps
and misalignments are not included in this list. The purpose of the small feature diagnostic panel is to search for features
that need to be removed prior to meshing. A feature is an entity such as a small curve or sliver surface that exists on a
single volume which must be resolved by the mesh. A gap or misalignment is two entities that should be coincident, but
are not, due to translation or other problems. Gaps and misalignments may not hinder mesh generation on a given
volume, but they do prevent proper imprinting and merging.

The imprint/merge, merge tolerance, and overlapping volume panels contain diagnostics that check for misalignment
problems. The purpose of those diagnostics is to enable imprinting and merging of a volume with small misalignments.

Note: The smallest feature size is used as a metric on the merge tolerance page, but it is only used to get an initial
estimate for the merge tolerance. Small feature size and merge tolerance represent different metrics, and should not be
confused.

In Figure 1, the small feature size diagnostic finds small features with lengths of 0.707, 0.15 and 0.25. The user may
decide that the smallest feature he or she wishes to keep is the one at the 0.25 size. If he sets the small feature size to
0.25, the other features will be flagged as small curves and surfaces on the Small Features page. They can then be
removed using tweaking and other geometry clean-up commands. If he sets the small feature size to 0.707, none of the
features will be flagged as small features.

In addition to the features shown, this model contains two vertices that are slightly misaligned due to geometry translation
problems. The nearly coincident vertices are not listed on the small features list because the vertices lie on different
volumes. To find these near coincident vertices, the user would use the merge tolerance panel.

Cubit 13.2 User Documentation

784

Figure 1. Small Features and Overlap on a Model

785

Blend Surfaces

Blend surfaces are common in solid model meshing problems. A blend surface, also known as a fillet or chamfer, is
problematic for sweeping algorithms which have trouble assigning vertex types on blend surfaces. While blend surfaces
present a challenge for meshing applications, there are many tools within ITEM to help guide the user through possible
solutions.

Diagnostic: Blend surfaces are detected by looping over the curves on a surface and examining the angles, surface
normals, and curvature of curves and adjacent surfaces.

Solutions: The current solution to blend surfaces is to remove the surface and attempt to extend adjacent surfaces to fill
in the gap. An example of blend surfaces that have been removed is shown below. This is useful for models which can be
simplified without losing important topology.

Figure 1. A volume which has been simplified by removing blend surfaces.

787

Geometry Decomposition

Automatic decomposition has been researched and tools have been developed which have met with some limited
success [Lu,99 , Staten,05]. Automatic decomposition requires complex feature detection and sub-division algorithms.
The decomposition problem is at least on the same order of difficulty as the auto-hex meshing problem. Fully automatic
methods for quality hexahedral meshing have been under research and development for many years [Blacker,93 ,
Folwell,98 , Price,95]. However, a method that can reliably generate hexahedral meshes for arbitrary volumes, without
user intervention and that will build meshes of an equivalent quality to mapping and sweeping techniques, has yet to be
realized. Although fully automatic techniques continue to progress [Staten,06], the objective of the proposed environment
is to reduce the amount of user intervention required while utilizing the tried and true mapping and sweeping techniques
as its underlying meshing engine.

Instead of trying to solve the all-hex meshing problem automatically, the ITEM approach to this problem is to maintain
user interaction. The ITEM algorithms determine possible decompositions and suggest these to the user. The user can
then make the decision as to whether a particular cut is actually useful. This process helps guide new users by
demonstrating the types of decompositions that may be useful. It also aids experienced users by reducing the amount of
time required to set up decomposition commands.

Diagnostics: The current diagnostic for determining whether a volume is mappable or sweepable is based upon the
autoscheme tool described in [White,00]. Given a volume, the autoscheme tool will determine if the topology will admit a
mapping, sub-mapping or sweeping meshing scheme. For volumes where a scheme cannot be adequately determined, a
set of decomposition solutions are generated and presented to the user.

Solutions: The current algorithm for determining possible cut locations is based on the algorithm outlined in [Lu,99] and is
described here for clarity:

 Find all curves that form a dihedral angle less than an input value (currently 135)

 Build a graph of these curves to determine connectivity

 Find all curves that form closed loops

 For each closed loop:

o Find the surfaces that bound the closed loop

o Save the surface

o Remove the curves in the closed loop from the processing list

 For each remaining curve:

o Find the open loops that terminates at a boundary

o For each open loop:

 Find the surfaces that bound the open loop

 Save the surfaces

 For each saved surface:

o Create an extension of the surface

o Present the extended surface to the user as a possible decomposition location.

This relatively simple algorithm detects many cases that are useful in decomposing a volume. Future work will include
determining symmetry, sweep, and cylindrical core decompositions. These additional decomposition options should
increase the likelihood of properly decomposing a volume for hexahedral meshing.

Figure 1 shows an example scenario for using this tool. The simple model at the top is analyzed using the above
algorithm. This results in several different solutions being offered to the user, three of which are illustrated here. As each
of the options is selected, the extended cutting surface is displayed providing rapid feedback to the user as to the utility of
the given option. Note that all solutions may not result in a volume that is closer to being successfully hex-meshed.
Instead the system relies on some user understanding of the topology required for sweeping.

Each time a decomposition solution is selected and performed, additional volumes may be added, which will in turn be
analyzed by the autoscheme diagnostic tool. This interactive process continues until the volume is successfully
decomposed into a set of volumes which are recognized as either mappable or sweepable.

Cubit 13.2 User Documentation

788

Figure 1. ITEM decomposition tool shows 3 of the several solutions generated that can be selected to decompose
the model for hex meshing

789

Recognizing Nearly Sweepable Regions

The purpose of geometry operations such as decomposition is to transform an unmeshable region into one or more
meshable regions. However, even the operations suggested by the decomposition tool can degenerate into guesswork if
they are not performed with a specific purpose in mind. Without a geometric goal to work toward, it can be difficult to
recognize whether a particular operation will be useful.

Incorporated within the proposed ITEM environment are algorithms that are able to detect geometry that is nearly
sweepable, but which are not fully sweepable due to some geometric feature or due to incompatible constraints between
adjacent sections of geometry. By presenting potential sweeping configurations to the user, ITEM provides suggested
goals to work towards, enabling the user to make informed decisions while preparing geometry for meshing.

Unlike the decomposition solutions presented in the previous section, the purpose of recognizing nearly sweepable
regions is to show potential alternative source-target pairs for sweeping even when the autoscheme tool does not
recognize the topology as strictly sweepable. When combined with the decomposition solutions and the forced
sweepability capability described later, it provides the user with an additional powerful strategy for building a hexahedral
mesh topology.

Diagnostics: In recognizing nearly sweepable regions, the diagnostic tool employed is once again the autoscheme tool
described in [White, 00]. Volumes that do not meet the criteria defined for mapping or sweeping are presented to the user.
The user may then select from these volume for which potential source-target pairs are computed.

Solutions: The current algorithm for determining possible sweep configurations is an extension of the autoscheme
algorithm described in [White, 00]. Instead of rejecting a configuration which does not meet the required sweeping
constraints, the sweep suggestion algorithm ignores certain sweeping roadblocks until it has identified a nearly feasible
sweeping configuration. The suggestions are presented graphically, as seen in Figure 1. In most cases, the source-target
pairs presented by the sweep suggestion algorithm are not yet feasible for sweeping given the current topology. The user
may use this information for further decomposition or to apply solutions identified by the forced sweepability capability
described next. The sweep suggest algorithm also provides the user with alternative feasible sweep direction solutions as
shown in Figure 1. This is particularly useful when dealing with interconnected volumes where sweep directions are
dependent on neighboring volumes.

Figure 1. (a) ITEM displays the source and target of a geometry that is nearly sweepable. The region is not
currently sweepable due to circular imprints on the side of the cylinder. (b) Alternative feasible sweep directions

are also computed.

791

Forced Sweepability

In some cases, decomposition alone is not sufficient to provide the necessary topology for sweeping. The forced
sweepability capability attempts to force a model to have sweepable topology given a set of source and target surfaces.
The source-target pairs may have been identified manually by the user, or defined as one the solutions from the sweep
suggestion algorithm described above. All of the surfaces between source and target surfaces are referred to as linking
surfaces. Linking surfaces must be mappable or submappable in order for the sweeping algorithm to be successful. There
are various topology configurations that will prevent linking surfaces from being mappable or submappable.

Diagnostics: The first check that is made is for small curves. Small curves will not necessarily introduce topology that is
not mappable or submappable but will often enforce unneeded mesh resolution and will often degrade mesh quality as the
mesh size has to transition from small to large. Next, the interior angles of each surface are checked to see if they deviate
far from 90 multiples. As the deviation from 90 multiples increases the mapping and submapping algorithms have a harder
time classifying corners in the surface. If either of these checks identify potential problems they are flagged and potential
solutions are generated.

Solutions: If linking surface problems are identified ITEM will analyze the surface and generate potential solutions for
resolving the problem. Compositing the problem linking surface with one of its neighbors is a current solution that is
provided. ITEM will look at the neighboring surfaces to decide which combination will be best. When remedying bad
interior angles the new interior angles that would result after the composite are calculated in order to choose the
composite that would produce the best interior angles. Another criterion that is considered is the dihedral angle between
the composite candidates. Dihedral angles close to 180 are desirable. The suggested solutions are prioritized based on
these criteria before being presented to the user. Figure 1 shows an example of a model before and after running the
forced sweepability solutions. The top and bottom of the cylinder were chosen as the source and target surfaces
respectively.

Figure 1. Non-submappable linking surface topology is composited out to force a sweepable volume topology

793

Generating a Mesh in ITEM

The mesh generation panel in ITEM is different from the other panels in Cubit. Meshing errors can arise from a number of
different problems. Many of these problems are caused from improper geometry preparation/cleanup. Other problems can
be caused from improper interval settings, or meshing schemes. Instead of suggesting specific operations as it does on
other panels, the meshing panel in ITEM will suggest several possible solutions based on the error message output. Each
of these solutions may require significant user input, and may require you to revisit previous ITEM panels or Control
panels. To open the appropriate Control panel, you can right click on the solution and select "Show Command Panel". For
convenience, these general solutions are described here, including which ITEM panels and which Control panels they
refer to. References to help topics are also included.

Figure 1. ITEM Mesh Panel

ITEM Meshing Suggestions

1. The volume is not decomposed enough. It may need to be webcut.

Diagnostic: This solution message appears when auto scheme selection fails. There are many reasons that
auto scheme selection may have failed. Check to make sure that your volume is broken up into meshable parts.
For sweepable volumes, this means that each volume should only have one target surface.

Cubit 13.2 User Documentation

794

Action: Right-clicking on this solution and selecting the "Show command panel" option will open the webcutting
commands on the control panel. Alternatively, you can also return to the ITEM decomposition panel for more
webcutting suggestions.

Help Topics:
Geometry Decomposition explains diagnostics and solutions on the ITEM decomposition panel
Decomposition Tutorial has several webcutting tips and examples.
Web Cutting Documentation contains all of the syntax for webcutting commands in Cubit.

2. Meshing schemes may need to be manually set.

Diagnostic: This solution message appears when auto scheme selection fails, interval matching fails, or
interval assignments fail. Setting the schemes manually may help resolve some of these issues. It may also
help to set source and target surfaces explicitly for swept meshes.

Action: The volume schemes can be set explicitly from the Volume-Mesh control panel. The "Set Source and
Target" panel in ITEM can be used to aid in setting explicit source and target surfaces for swept meshes.

Help Topics:
Recognizing Nearly Sweepable Regions explains how ITEM might be used to recognize nearly sweepable
regions.
Meshing the Geometry has some suggestions for getting difficult geometry to mesh.
Decomposition Tutorial has several examples where the meshing schemes have to be set manually.
Meshing Schemes gives an overview of all of the meshing schemes in Cubit.

3. The mesh size or number of intervals on a volume may need to be changed.

Diagnostic: This solution message appears for many reasons: auto scheme selection fails, interval matching
fails, interval assignments fail, inconsistent edge-face ratios, odd number of intervals on a paver loop, or
connectivity problems. Setting explicit intervals may be necessary

Action: The volume mesh intervals can be set explicitly from the Volume-Interval control panel. The "Set
Element Sizes" panel in ITEM can be used to aid in setting explicit sizes and sizing functions for meshes.

Help Topics:
Interval Assignment has links to different interval assignment methods in Cubit
Bias, Dualbias describes how to create a biased mesh and Controlling Mesh Quality describes how to
propagate a curve bias.
Decomposition Tutorial has several examples where the meshing intervals are set manually.
Mesh Adaptivity and Sizing Functions describes how to use sizing functions in Cubit.

4. Compositing surfaces or curves to remove unnecessary details may resolve the problem.

Diagnostic: This solution message appears when auto-scheme selection fails. A model may contain small
curves or surfaces that need to be composited with adjacent surfaces. Or it may just contain more detail than is
needed for analysis. Compositing surfaces and curves does not affect the underlying geometry.

Action: The Remove Small Features or Force Sweep Topology panels in ITEM may suggest several possible
candidates for compositing. The Surface-Modify-Composite or the Curve-Modify-Composite panels can be used
to composite surfaces or curves respectively. These panels are also used to delete virtual geometry from
curves or surfaces.

Help Topics:

Removing Small and Narrow Features describes using ITEM to remove small and narrow features in your
model.
Forced Sweepability describes using ITEM to force sweepability using virtual geometry.
Composite Curves explains how to composite curves in Cubit.
Composite Surfaces explains how to composite surfaces in Cubit.
Decomposition Tutorial Example 7 has an example of using composite curves to improve meshability.
Power Tools Tutorial has another example of using composite geometry.

5. Collapsing surfaces, curves, or angles to remove unnecessary details may resolve the problem.

Generating a Mesh in ITEM

795

Diagnostic: This solution message appears when auto-scheme selection fails. Collapsing a surface involves
splitting a surface, and compositing it with adjacent surfaces.

Action: The Remove Small Features panel in ITEM may suggest several possible candidates for collapse. The
Surface-Modify-Collapse, Curve-Modify-Collapse, or Vertex-Modify-Collapse Angle panels can also be used to
collapse surfaces, curves, or angles respectively.

Help Topics:
Removing Small and Narrow Features describes using ITEM to remove small and narrow features in your
model.
Collapse Angle explains how to collapse angles in Cubit.
Collapse Curves explains how to collapse curves in Cubit.
Collapse Surfaces explains how to collapse surfaces in Cubit.

6. Removing unnecessary surfaces or curves to simplify geometry may improve the chances that a
volume will mesh.

Diagnostic: This solution message appears when auto-scheme selection fails. Removing unnecessary
surfaces may improve meshability.

Action: The Remove Small Features panel in ITEM may suggest several possible candidates for removal. The
Surface-Modify-Tweak panel, Surface-Modify-Remove panel, Curve-Modify-Tweak or the Volume-Modify-
Remove Slivers panels are also used to remove unnecessary features in a model.

Help Topics:
Removing Small and Narrow Features describes using ITEM to remove small and narrow features in your
model.
Removing Geometric Features describes the syntax for removing unneeded surfaces and vertices, including
sliver surfaces.
Tweaking Geometry contains the syntax for tweaking surfaces, curves, and vertices.
Power Tools Tutorial has an example of using the tweak surface command to simplify a model.

7. Smoothing the mesh may improve the mesh quality.

Diagnostic: This solution message appears when mesh generation creates poor quality elements, particularly if
it creates inverted or "negative Jacobian" elements. In some cases, smoothing a mesh may get rid of these bad
elements.

Action: Depending on the geometry type, the smoothing panel can be accessed from the Control panel under
Volume-Smooth or Surface-Smooth panels. It is also helpful to use the Validate Mesh page in ITEM for
assessing quality metrics.

Help Topics:
Mesh Smoothing describes the different smoothing schemes in Cubit and how to use them.
Mesh Validation describes how to use quality metrics in ITEM and gives suggestions on smoothing schemes to
try.
Mesh Quality Assessment describes the different quality metrics in Cubit and how to use them.

8. Deleting the mesh on an entity in order to further decompose or modify it may be necessary.

Diagnostic: This solution message appears when mesh generation creates a poor quality mesh, due to
negative Jacobians, inconsistent edge-face ratios, connectivity problems, or any other invalid mesh
configuration. Mesh generation can be a very iterative process. It is sometimes necessary to delete a mesh and
try different schemes, sizes, or even just change the meshing order. Sometimes you must further decompose or
modify your geometry to get it to mesh.

Action: To delete a mesh, you can select it in the graphics window and choose Delete Mesh from the right-click
context menu. You can also delete a mesh from any of the Mesh-Entity-Delete panels on the Control Panel.

Help Topics:
Mesh Deletion describes command line syntax for deleting a mesh.

9. Changing vertex types may make the surface or volume meshable.

Cubit 13.2 User Documentation

796

Diagnostic: This solution message appears when mesh generation fails to assign valid vertex types on
mapped or submapped surfaces.

Action:To change the vertex type on a surface, select the Surface-Mesh-Submap-Advanced or Surface-Mesh-
Map-Advanced panels. From here you can assign and view vertex types.

Help Topics:
Surface Vertex Types describes how to change the vertex types on a geometry.

797

Validating the Mesh in ITEM

Advancements in the mesh generation algorithms have significantly reduced the amount of quality problems seen in the
initially generated mesh. Further, ITEM generally relies on the most robust meshing algorithms available in CUBIT,
specifically sweeping for hexahedral mesh generation (Scott,05) and the Tetmesh-GHS3D (George,91) meshing software
(See http://www.distene.com). However, some problems can still exist, and therefore ITEM has integrated quality
diagnostics and solution options.

Diagnostics: After the mesh has been generated, the user may choose to perform element quality checks. ITEM utilizes
the Verdict (Stimpson,07) library where a large number of mesh quality metrics have been defined and available as a
modular library. If no user preference is specified, ITEM uses the Scaled Jacobian distortion metric to determine element
quality. This check will warn users of any elements that are below a default or user-specified threshold, allowing various
visualization options for displaying element quality.

Solutions: If the current element quality is unacceptable, ITEM will present several possible mesh improvement solutions.
The most promising solutions are provided through ITEM's interface to two smoothers: mean ratio optimization and
Laplacian smoothing. These are provided as part of the Mesquite (Brewer,03) mesh quality improvement tool built within
CUBIT. The user has the option of performing these improvements on the entire mesh, subsets of the mesh defined by
the element quality groups, or on individual elements. The Laplacian smoothing scheme allows the users to smooth just
the interior nodes or to simultaneously smooth both the interior and boundary nodes in an attempt to improve surface
element quality.

http://www.distene.com/

799

Automatic Detail Suppression

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

Geometry models often have small features, which can be difficult to resolve in a mesh. In fact, these features are
sometimes too small to see, and are revealed only when the user attempts to mesh the geometry. Automatic detail
suppression identifies and removes the following types of features from the geometric model:

 valence-2 vertices

 short edges

 small faces

Details are removed using virtual geometry , which means they can be restored later if desired.

There are several stages to the automatic detail suppression process, all of which can be controlled separately by the
user. Small details are identified using the command:

Detail <ref entity list> [identify] [dimension <dim> [only]]

The results are placed in a series of groups named "detail_vertices", "detail_edges", "detail_faces" and "detail_volumes".
These details can be drawn or highlighted using the normal group commands:

Draw {detail_vertices | detail_edges | detail_faces | detail_volumes}

Highlight {detail_vertices | detail_edges | detail_faces | detail_volumes}

Or by using the following command:

Detail <ref entity list> draw [dimension <dim> [only]]

Details are removed automatically from the model using the command:

Detail <ref entity list> remove [dimension <dim> [only]]

The dimension option is used to identify the maximum dimension of entities examined for small detail identification
(<dim> is 3, 2, 1 for volumes, surface, and curves, respectively). If the only identifier is specified, only entities of the
specified dimension are examined, otherwise that dimension and all lower dimensions are examined.

In some cases, details are identified which the user would like to retain in the model; likewise, the algorithm used to
identify small details sometimes misses small details the user would like removed from the model. To include or exclude
geometric entities from the list of small details to be removed, the following command is used:

Detail <ref entity list> [include | exclude]

Example

Shown below is a model of a game die meshed with identical mesh size, with details included (left) and removed (right).

Cubit 13.2 User Documentation

800

Note: "Small" Measurement

Automatic detail suppression identifies "small" geometric entities by comparing their "size" to the mesh size assigned by
the user to the entity. Anything smaller than that size is identified as being a detail and put in the appropriate detail group
(e.g. detail_faces, detail_edges, etc.). The size of an edge is simply its arc length; surfaces and volumes are measured
using the "hydraulic diameter" (see next note).

Note: Hydraulic Diameter

The hydraulic diameter of a surface is computed as 4.0*A/P, where A is the surface area and P is the summed arc lengths
of all bounding curves. For circles, the hydraulic diameter is the circle diameter; for squares, it is the length of the
bounding curves. Similarly, for volumes, the hydraulic diameter is computed as 6.0*V/A, which evaluates to the diameter
and bounding curve length for perfect spheres and cubes, respectively.

801

Automatic Geometry Decomposition

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

In many cases, model geometry includes protrusions which, when cut off using geometry decomposition, are easily
meshable with existing algorithms. CUBIT includes a feature-based decomposition capability, which automates this
process. This algorithm operates by finding concave curves in the model, grouping them into closed loops, then forming
cutting surfaces based on those loops. Although this algorithm is still in the research stage, it can be useful for automating
some of the decomposition required for typical models.

To automatically decompose a model, use the command

Cut Body <body_id_range> [Trace {on|off}] [Depth <cut_depth>]

If the Trace option is used, the algorithm prints progress information as decomposition progresses. The Depth option
controls how many cuts are made before the algorithm returns; by default, the algorithm cuts the model wherever it can.

Automatic decomposition is used to decompose the model shown in Figure 1 (left), with the results shown in Figure 1
(right). In this case, automatic decomposition performs all but one of the required cuts.

Figure 1. Model where automatic decomposition was utilized.

803

Cohesive Elements

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

Cohesive elements are used to model things like adhesive that may lose its bond. Elements in a cohesive region
originally have zero volume or area, and then expand as the simulation progresses.

Cubit supports 2D cohesive regions. Cohesive elements are implemented in Cubit as element blocks with an element
type of FLATQUAD. The cohesive region is identified by assigning geometric curves to the FLATQUAD element
block. When the element block is exported, each edge on the specified curves is represented in the exported file as a 4-
noded quadrilateral element with zero area. The quadrilateral element is formed by duplicating each node in the original
edge and then connecting the two original and two duplicate nodes to form a zero-area quadrilateral.

The image below shows how a FLATQUAD is represented in an exported mesh file. The figure on the left is how the
mesh appears in Cubit. The figure on the right is how the mesh appears in the output file. Note that the figure on the right
is a topological representation, not a true geometric representation. In reality, the nodes on the left side of block 100 are
coincident with the nodes on the right side of block 100, causing the pink elements to have zero area.

Multiple Curves in FLATQUAD Blocks

Multiple curves may be assigned to a single FLATQUAD element block, as long as the curves do not form a branching
path. The figure below, for example, shows an acceptable configuration of multiple curves.

Cubit 13.2 User Documentation

804

Although multiple curves may be assigned to a single cohesive block, the curves assigned to a block of type FLATQUAD
must not branch. A branch occurs whenever three or more curves share a common vertex, as shown in the figure
below. This will be corrected in future versions of Cubit.

Cohesive Elements

805

807

Deleting Mesh Elements

Element deletion for owned geometry is no longer available unless the developer flag is turned on. Element deletion is still
available without the developer flag for free meshes. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

The following forms of the delete commands operate on meshed entities only. They allow low-level editing of meshes to
make minor corrections to a mostly correct mesh. They are not designed for major modifications to existing meshes.
Because Cubit's display routines were not designed with these type of operations in mind, these commands may cause
the current display of the affected entities to take an unexpected form. An appropriate drawing command can used to
return the display to the desired view.

When deleting elements, the default behavior will be that the child mesh entities will be deleted when they become
orphaned. For example, when a hex is deleted, if its faces, edges and vertices are no longer used by adjacent hex
elements, then they will also be deleted. The no_propagate option will leave any child mesh entities regardless if they
become orphaned.

The delete command removes one or more mesh entities from an existing mesh. Additional mesh entities may be deleted
as well depending on the particular form of the command. Exactly which entities are removed is explained in the following
descriptions.

Delete {Hex|Tet} <range> [No_Propagate]

Deletes the specified hexes or tets. All associated tris, faces, edges, and nodes are also deleted unless the no_propagate
option is given.

Delete Wedge <range>

Deletes the specified wedges. No other mesh entities are affected.

Delete {Face|Tri} <range> [No_Propagate]

Deletes the specified faces or tris. For faces, all hexes that contain the face are also deleted. For tris, all tets that contain
the tri are also deleted. All associated edges and nodes are also deleted unless the no_propagate option is given.

Delete Edge <range> [No_Propagate]

Deletes the specified edges. Any associated tris, faces, hexes, and tets are also deleted. Any associated nodes are also
deleted unless the no_propagate option is given.

Delete Node <range>

Deletes the specified nodes. Any associated edges, tris, faces, hexes, and tets are also deleted.

809

FeatureSize

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

Applies to: Curves

Summary: Meshes a curve based on its proximity to nearby geometry and size of nearby geometric features. This is an
alpha feature and should be used with caution.

Syntax:

Curve <range> Scheme Featuresize

Related Commands:

Curve <range> Density <density_factor>

Discussion:

The user may also automatically bias the mesh from small elements near complicated geometry to large elements near
expanses of simple geometry. Meshing a curve with scheme featuresize places nodes roughly proportional to the distance
from the node to a piece of geometry that is foreign to the curve. Foreign means that the geometric entity doesn't contain
the curve, or any of its vertices (i.e. the entity's intersection with the curve is empty). It is known that featuresize is a
continuous function that varies slowly. Featuresize meshing is very automatic and integrated with interval matching.
Featuresize meshing works well with paving, and in some cases with structured surface-meshing schemes (map,
submap) as well.

If desired, the user may specify the exact or goal number of intervals with a size or interval command, and then the
featuresize function will be used to space the nodes.

The featuresize function may also be scaled by the user to produce a finer or coarser mesh using the density command
as follows:

Curve <range> Density <density_factor>

The default scaling factor or density is 1. Higher densities also reduce the transition rate of the node spacing. A density of
2 usually gives a good quality mesh. A density below about 0.5 could produce rapid transitions and poor mesh quality.
The following shows an example of different density values when using the featuresize scheme.

811

Geometry Tolerant Meshing

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

Applies to:Volumes, Surfaces

Mesh Type: Triangle, Tetrahedral, Quadrilateral

Summary:The geometry tolerant meshing algorithm takes a volume and generates a mesh by ignoring small features,
gaps, slivers, and surface alignment problems in the geometry.

Syntax:

Mesh Tolerant Volume <range> {Triangle|Tet|Quadrilateral} {Free} {Fraction <number>}
{Fem|New|Old}

Related Commands:

Mesh Tolerant [Fix|Free] [Volume|Surface|Curve|Vertex] <range>

Mesh Tolerant Volume <range> Facet

Discussion:

Many geometric assemblies contain imperfections or small features that hinder mesh generation. These imperfections can
be caused by excessive detail, data format translation errors, poorly constructed initial models and a variety of other
factors. Rather than performing time-consuming geometry operations to remove these features, the geometry tolerant
meshing scheme will be "tolerant" of these details, and generate a mesh that ignores features below a certain size
threshold. Since there may be features under that threshold which the user desires to retain in the final mesh, there is also
the option to "fix" certain geometric features so they are retained in the final mesh.

The basic approach to this method involves using the model’s facet data to create a a loose representation of the
geometry using the geometry’s native kernel. This faceted representation is modified to conform to the features of the
model which are either "fixed" by the user, or larger than a user-provided size. Small edges are removed from the mesh,
and long edges are refined. The final mesh is created by iterating over patches of triangles from the initial mesh, and re-
meshing these patches with good quality elements.

Initial Mesh Size

An initial mesh size must be input by the user before using the geometry tolerant meshing scheme. This initial mesh size
is important to the final outcome. If the edge lengths are initially much smaller than the mesh size, the algorithm will have
to do significant work to coarsen the mesh. On the other hand, if the mesh edges are too large, the final mesh will either
not capture the geometry well, or the geometry information will, later, have to be extracted from the original model. The
mesh sizing is set using the regular interval specification methods.

The sizing algorithm will assign a mesh size to each geometry element. The initial faceted mesh will be a loose
approximation of these sizes.

Fixing a Geometric Entity

Before meshing the geometry, the user may wish to specify geometry that will be fixed in the final mesh. A fixed geometric
entity is one that should be unchanged by the final mesh. The user may specify a volume, surface, curve, or vertex to fix.
After the initial coarse representation is created, the mesh edges that belong to any of these geometric entities will be
marked as fixed. One consequence of fixing an entity is that the size of the initial mesh edges that are created by the
geometry kernel will be unchanged throughout the rest of the meshing process. If the faceting engine produces small
mesh edges in a region, they will remain in the final mesh.

Mesh Tolerant Fix [Volume|Surface|Curve|Vertex] <range>

To reverse the effects of fixing a geometric entity, the user may "free" an entity using the following syntax

Cubit 13.2 User Documentation

812

Mesh Tolerant Free [Volume|Surface|Curve|Vertex] <range>

Tolerance Fraction

The user-provided fraction controls which of non-fixed features are large enough to be included in the final mesh. It is
possible for the tolerance fraction to be any number greater than zero, but in practice this number is usually less than 1.
The fraction can be thought of as the percentage of the mesh size that defines a tolerable feature. After the initial faceted
mesh has been created, the algorithm will loop through all of the mesh edges on the entity. Mesh edges which are smaller
than the value of the (mesh size)*(tolerance fraction) will be removed if they do not belong to a fixed edge. In addition,
each triangle on the surface is compared to the tolerant size to determine if it is too small. The tolerance size for a triangle
is the minimum of the tolerance for the vertices. If the altitude of the triangles is shorter than that tolerance, the shortest
edge of the triangle is removed. For example, if the following commands were issued:

volume 1 size 0.5
mesh tolerant volume 1 fraction 0.25

the tolerance value in the above example would be 0.5*0.25 or 0.125. Any mesh edges (from the initial faceted
representation) that are smaller than 0.125 would be removed, unless fixed. Like the initial mesh size, the choice of an
appropriate tolerance fraction for a given mesh size is an important to the final outcome. A larger tolerance fraction will
remove more small features and possibly require you to specify more fixed edges explicitly. A smaller tolerance fraction
will respect most of the original geometry, but may include features you wish to ignore.

Creating the tolerant mesh

A typical sequence of events to create a tolerant mesh would be to:

1. Specify a mesh size
2. Determine tolerance fraction
3. Fix geometric entities that have features that are smaller than that mesh size * tolerance fraction using the

Mesh Tolerant Fix command
4. Mesh the geometry using the Mesh Tolerant command

The command syntax for the meshing step is shown below

Mesh Tolerant Volume <range> {Triangle|Tet|Quadrilateral} {Free} {Fraction <number>} {Fem|New|Old}

To create just the initial faceted mesh for visualization purposes the following command may also be used

Mesh Tolerant Volume <range> Facet

The geometry tolerant scheme can also handle merged volumes and sheet bodies, and will respect boundary conditions
as appropriate.

Fem/New/Old Options

The FEM/New/Old options refer to how the initial triangle surface mesh is generated. The FEM option will use Cubit's
advancing front trimesh scheme as the initial surface mesh. This is more likely to produce better quality elements, but less
likely to succeed in meshing. The New and Old options will both create a mesh by using the geometry engine's facetted
representaton. There is a slight variation in how the mesh is created, however. The New option will create the facet mesh
for the entire volume using a method that requires no stitching, while the Old option will loop over surfaces, assigning
sizes and meshing them individually.

Free Mesh vs. Mesh-Based Geometry

The free option of the tolerant meshing algorithm refers to whether the final mesh is a free mesh, or if it attempts to create
new mesh-based geometry to conform to the mesh. If the free option is included, the final mesh will be a free mesh,
without any associated geometry. The mesh elements will be automatically placed into a group named
'tolerant_mesh_group'. All surface meshes will be placed in groups named 'mesh_from_surface_<id>' where <id> refers
to the former surface id number. If the free option is omitted, or the "Create Mesh Based Geometry" button on the GUI is
checked, the algorithm will create new mesh-based geometry that resides on top of the old geometry and contains the
new mesh.

Geometry Tolerant Meshing

813

Quadrilateral Surface Mesh

The quadrilateral surface meshing algorithm is based almost entirely on the triangle meshing algorithm. Only a few special
steps are requred to have quadrilaterals at the final stage. The target mesh size is initially scaled by a factor of two,
resulting in a slightly coarser representation of the original geometry. After the refinement step that makes the edges close
to the scaled target size, each edge of the triangle is split one more time, which allows the resulting facets to be grouped
into two pairs. Once this pairing has been identified, each pair is considered a quadrilateral, and the paving algorithm is
used to create higher quality elements.

Figure 1. A triangle split into 4 triangles can then be paired into two quadrilaterals, the red and green shown on
the right.

Examples

Figure 2. Demonstration of the geometry tolerant meshing algorithm to remove a small groove.

Cubit 13.2 User Documentation

814

Figure 3. Removal of near-tangency between two curves

In Figure 2, the algorithm correctly detects and resolves a near tangency between two curves. However, the interior mesh
edges inside the cylindrical region retain much of their original shape. This causes a slight "bulge" in the cylindrical
surface. While this may not be desirable, it is the expected behavior of the algorithm.

Figure 4. Tolerant meshing performed on a simple assembly with pre-merged volumes

Geometry Tolerant Meshing

815

Figure 5. Quadrilateral shell mesh generated using geometry tolerant meshing scheme. Note that no hexahedral
elements were generated.

Limitations

Accumulated geometric error

By performing the remeshing step on the original facets, we accumulated discretization error. The original facets are an
approximation to the original surfaces, and the new facets are an approximation to the original facets. Because of this, the
final mesh may not respect the original geometry, especially in areas of high curvature. However, in many cases this
accumulation does not seem prohibitive. Because the facets were created to respect the original shape well, the initial
discretization error is usually small.

Cubit 13.2 User Documentation

816

Figure 5. Accumulation of discretization error in geometry tolerant mesh

Loss of Resolution due to initial faceting

If the initial faceting is coarser than the target mesh size, the refinement step is required to make the edges closer to the
target size. However, for this step, we do no have a good way, yet, to maintain the geometry well. More work will be
required to determine it is feasible to do this without accumulating additional error.

Geometry Tolerant Meshing

817

Figure 6. Poor resolution of geometry due to coarse initial faceting

Surface to Surface proximity

The current approach only removes small features that can be detected by the surface mesh. Since there are no elements
filling the interior of the volume, two surfaces that are close (but have no overlapping edges) will not be flagged as small
features. Regular geometry manipulation would be required in this case to tweak or remove the surfaces. Figure 7 shows
an example of where the algorithm fails to recognize close surfaces as distinct surfaces.

Cubit 13.2 User Documentation

818

Figure 7. Demonstration of geometry-tolerant meshing algorithm failing to recognize a thin region that has no
small edges or facets

Mesh size on fixed geometry entities

If a geometric entity is fixed, the original facet edges on that entity are not collapsed regardless of how small, relative to
the target mesh size, they may be. Therefore, in the current approach, there is no mechanism for coarsening the feature
mesh edges in these regions.

819

Mesh Cutting

Note: This feature is under development. The command to enable or disable features under development is:

 Set Developer Commands {On|OFF}

The term "mesh cutting" refers to modifying an existing mesh by moving nodes to a cutting entity and modifying the
connectivity of the mesh so that the original mesh fits a new geometry. The behavior of mesh cutting is intended to be
similar to web cutting in that the process results in a decomposition of the original geometry. The difference is that the
decomposition is performed on meshed geometry and results in the creation of virtual geometry partitions. The underlying
acis body remains unchanged. The user has the option to determine what is partitioned during mesh cutting: the volume,
the surfaces only, or nothing.

The current scope of mesh cutting is limited to cutting hex meshed volumes with planes and extended surfaces. These
cutting entities are also limited in that mesh cutting will not work if they pass through a vertex at the end of more than two
curves. Mesh cutting does not work on tet meshes or surface meshes.

The steps of mesh cutting include:

 Create a starting mesh. This mesh is typically simpler than the desired final mesh and can be created with
sweeping, mapping, or some other available meshing algorithm. Currently, the starting mesh must be a single
volume: mesh cutting does not handle merged volumes or assemblies.

 Create a cutting entity that can be used to capture the new detail in the mesh. Currently, mesh cutting works
with planes or sheets extended from surfaces. It is important to note that if an extended surface is used, mesh
cutting will not capture any geometric features (curves or vertices) of the surface.

 Issue the command to cut the mesh. The meshcut commands are similar in syntax and behavior to the webcut
commands.

The following entities with the associated commands are available for mesh cutting:

Coordinate Plane

A coordinate plane can be used to cut the model, and can optionally be offset a positive or negative distance from its
position at the origin.

Meshcut Volume <range> Plane {xplane|yplane|zplane} [offset <dist>]

The planar surface to be used for mesh cutting can also be previewed using the Draw Plane command.

Planar Surface

An existing planar surface can also be used to cut the model.

Meshcut Volume <range> Plane Surface <surface_id>

The planar surface to be used for mesh cutting can also be previewed using the Draw Plane command.

Plane from 3 points

Any arbitrary planar surface can be used by specifying three nodes that define the plane.

Meshcut Volume <range> Plane Node <3_node_ids>

Extended Surface

An extended surface or "sheet" can also be used for mesh cutting. In this case, the sheet is not restricted to be planar and
will be extended in all directions possible. When cutting with an extended surface mesh cutting will ignore all curves and
vertices of the surface. Also, the resolution of the mesh will determine how well curved surfaces are captured with
meshcutting. A surface with high curvature will not be captured accurately with a coarse mesh. Note that some spline
surfaces are limited in extent and may not give an expected result from mesh cutting.

Cubit 13.2 User Documentation

820

Meshcut Volume <range> Sheet [Extended From] Surface <surface_id>

Note: When cutting with surfaces extended from composite surfaces the default underlying surface approximation may
result in a poor final mesh for mesh cutting. This problem can be fixed using the following command:

Composite closest_pt surface <id> gme

See the discussion on composite geometry for a more detailed description of this command.

Meshcut Options

The following options can be used with all the meshcut commands:

[PARTITION VOLUME|partition surface|no_partition]: By default, mesh cutting will create virtual partitions of the
volume being cut to match the cutting entity. This option allows mesh cutting to also create only the surface partitions or
create no partitions for the volume or surfaces.

[no_refine]: This option tells mesh cutting not to refine the mesh around the cutting entity.

[no_smooth]: This option tells mesh cutting not to perform the final smoothing step after the cut has been made.

Meshcutting Scope

The following is a list of the current scope and limitations of meshcutting.

 Meshcutting only works on hex meshes.

 Meshcutting only works for single volumes. It currently does not handle assembly meshes.

 Currently, only planes and extended surfaces can be used as the cutting entity.

 Curves and vertices on the cutting entity will not be captured in the mesh.

 Meshcutting will not work if the cutting entity passes through a meshed vertex that is at the end of more than
two curves.

 The resolution of the mesh determines how well a non-planar cutting entity will be captured in the resulting
mesh. Small features and high curvature will not be captured by a coarse mesh.

 Spline surfaces are limited in extent and may not give expected results if used as an extended cutting surface.

Meshcutting Example

The figures below show an example of mesh cutting. Figure 1 shows the body that will be meshed. This body is a brick
with intersecting through-holes. The steps to create a mesh for this body are listed below.

Mesh Cutting

821

Figure 1: The original, unmeshed body

Step 1: Create a starting mesh. Figure 2 below shows the starting mesh for this problem. The commands for this mesh
are:

cubit> create brick x 10
cubit> create cylinder radius 3 z 15
cubit> subtract 2 from 1
cubit> volume 1 scheme sweep
cubit> volume 1 size .75
cubit> mesh volume 1

Cubit 13.2 User Documentation

822

Figure 2: The starting mesh

Step 2: Create a cutting entity. Figure 3 shows the volume that will be used to cut the mesh. The commands are:

cubit> create cylinder radius 2 z 15
cubit> rotate body 3 about x angle 90

Mesh Cutting

823

Figure 3: The starting mesh and cutting entity

Step 3: Cut the mesh. Figure 4 shows the new mesh after the original mesh has been cut. At this point we have 3 meshed
volumes. The commands for this step are:

cubit> meshcut vol 1 sheet surface 13
cubit> draw volume 1 4 5

Cubit 13.2 User Documentation

824

Figure 4: The mesh after meshcutting

Step 4: Final step. Figure 5 shows the final mesh after the mesh of the mesh of the two extra volumes is deleted. The
commands are:

cubit> delete mesh vol 4 5 propagate
cubit> draw volume 1

Mesh Cutting

825

Figure 5: Final mesh after deleting unneeded elements

827

Mesh Grafting

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

Grafting is used to merge a meshed surface with a dissimilar unmeshed surface. In the process, the location of the nodes
on the meshed surface will be adjusted to fit to the bounding curves of the unmeshed surface and the connectivity of the
original mesh may be changed to improve the final quality of the mesh. This allows an unmeshed volume to be attached--
or grafted--onto a meshed volume. Grafting is particularly useful for models that have intersecting sweep directions (see
example below).

The command syntax for grafting is:

Graft {Surface <range> | Volume <id>} onto Volume <id> [no_refine] [no_smooth]

The Graft command will check that the second volume is meshed. It then searches for surfaces on the second volume
that overlap with the other volume or range of surfaces that is specified. If overlapping surfaces are found the mesh will
then be adjusted on the second volume and after any needed imprinting is done the overlapping surfaces will be merged
together.

Grafting Options

[no_refine]: This option tells grafting not to modify the connectivity of the original mesh. The mesh is still adjusted to fit
the boundary of the branch surface but no new elements are added.

[no_smooth]: This option tells grafting not to perform the final smoothing of the modified surface or volume mesh.

Grafting Scope

The following is a list describing the current scope and limitations of grafting:

 Grafting only works on volumes meshed with hex elements.

 The unmeshed branch surface cannot have any point outside the boundary of the meshed trunk surface.

 Grafting may have difficulty with branch surfaces that are very thin with respect to the element size of the
meshed surface or that have sharp angles.

 If grafting fails some of the nodes of the original mesh may have been moved. Check the mesh quality and re-
smooth if needed.

Grafting Example

This example shows the four basic steps of grafting:

1. Partition the geometry (optional).
2. Mesh the trunk volume.
3. Graft the branch volume onto the trunk volume.
4. Mesh the branch volume.

Step 1: Partition the geometry

Figure 1 shows the model that will be meshed. The arrows in the figure show the two intersecting sweep directions. Figure
2 shows the model decomposed for grafting.

Cubit 13.2 User Documentation

828

Figure 1. A model with two intersecting sweep directions.

Figure 2. The model decomposed for grafting

Step 2: Mesh the trunk volume.

Figure 3 shows the mesh of the trunk volume. At this point the mesh on the trunk surface adjacent to the branch surface is
a structured mesh that does not align with the boundary of the branch surface. The trunk and branch surfaces are two
separate surfaces.

Mesh Grafting

829

Figure 3. Meshed trunk volume.

Step 3: Graft the branch onto the trunk

Figure 4 shows the trunk surface after it has been modified to fit the branch surface. At this point the two surfaces have
been merged together.

Figure 4. Trunk surface after grafting.

Step 4: Mesh the branch volume.

The final mesh is shown in Figure 5.

Cubit 13.2 User Documentation

830

Figure 5. Final mesh

831

Optimize Jacobian

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

Applies to: Volume meshes

Summary: Produces locally-uniform hex meshes by optimizing element Jacobians

Syntax:

Volume <range> Smooth Scheme Optimize Jacobian [param]

Discussion:

The Optimize Jacobian method minimizes the sum of the squares of the Jacobians (i.e., volumes) attached to the smooth
node. Meshes smoothed by this means tend to have locally-uniform hex volumes.

The parameter <param> has a default value of 1, meaning that the method will attempt to make local volumes equal. The
parameter, which should always be between 1 and 2 (with 1.05 recommended), can be used to sacrifice local volume
equality in favor of moving towards meshes with all-positive Jacobians.

833

Randomize

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

Applies to: Curve, Surface and Volume meshes

Summary: Randomizes the placement of nodes on a geometry entity

Syntax:

{Surface|Volume} <range> Smooth Scheme Randomize [percent]

Discussion:

This scheme will create non-smooth meshes. If a percent argument is given, this sets the amount by which nodes will be
moved as a percentage of the local edge length. The default value for percent is 0.40. This smooth scheme is primarily a
research scheme to help test other smooth schemes.

835

Refine Mesh Boundary

Note: This feature is under development. The command to enable or disable features under development is:

 Set Developer Commands {On|OFF}

Boundary effects to be modeled in the analysis code frequently require a refined mesh near a specific surface. CUBIT
provides this capability with the Refine Mesh Boundary command. This command is similar to the Refine Mesh Volume
Feature command except that it can insert multiple sheets of hexes near the specified surface.

Refine Mesh Boundary Surface <range> Volume <id> {Bias <double>} {First_delta <double> |
Thickness <double>} [Layer <num_layers=1>] [SMOOTH|No_smooth]

With this command num_layers of hexes can be inserted at the first interval from the specified surface. A bias factor
indicating the change in element size must be specified. You must also indicate a first_delta or thickness which
represents the distance to the first inserted layer. The mesh in Figure 5 with bias 1.0 and first_delta of 5. The default
smooth option provides the capability to smooth the mesh following the refinement procedure.

Figure 5. Example of Boundary Surface Refinement

837

Sculpting

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

Applies to: Volumes

Summary: Grid based/Inside-Out research algorithm for generating all-hexahedral meshes for arbitrary 3D volumes. This
is an alpha feature and should be used with caution.

Syntax:

Volume <range> Scheme Sculpt

Related Commands:

Sculpt <volume_id_range> from <volume_id_range>

Discussion:

Sculpting takes a grid based approach to creating a volumetric mesh by
surrounding the meshing geometry with a structured grid, removing elements that lie outside the volume boundary from
the grid, manipulating the resulting stairstep mesh, and smoothing the exterior nodes to the volume boundary. The Sculpt
command can be used when a user desires to define there own bounding grid to build the volume mesh from. Multiple
volumes can define the user defined boundary grid. Currently Sculpting is still in stages of research and development.

Figure 1. Sculpted mesh of a dumbbell shape

Cubit 13.2 User Documentation

838

Figure 2. Sculpted mesh of a mechanical part

839

Super Sizing Function

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

The Super sizing function computes both the Curvature and the Linear function and takes the smaller value of the two.
This is an alpha feature and should be used with caution. The following is an example of Super element sizing.

Figure 1. NURB mesh with super sizing function, 34 by 16 density

841

Test Sizing Function

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

The Test sizing function is a hardwired numerical function used to demonstrate the transitional effect of sizing function-
based and adaptive paving. The function is a periodic function which is repeated in 50x50 unit intervals on a 2D surface in
the first quadrant (x > 0, y > 0, z = 0). This is an alpha feature and should be used with caution. An example of a surface
meshed with this sizing function is shown in Figure 1.

Figure 1. Test sizing function for spline geometry

Cubit 13.2 User Documentation

842

Figure 2. Test sizing function for square geometry

843

Transition

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

Applies to: Surfaces

Summary: Produces a specified transition mesh for specific situations

Syntax:

Surface <range> Scheme Transition
{Triangle|Half_circle|Three_to_one|Two_to_one|Convex_corner|Four_to_two} [Source Curve <id>]
[Source Vertex <id>]

Discussion:

The transition scheme supplies a set of transition primitives which serve to transition a mesh from one density to another
across a given surface. The six transition sub-types are demonstrated here.

Scheme Transition Triangle creates four quads in a triangle that
has sides of three, two, and one intervals.

Scheme Transition Half_circle creates three intervals on the flat
and three on the curved part of the half-circle, then creates four
quads in the surface.

Cubit 13.2 User Documentation

844

Scheme Transition Three_to_one creates four quads on a
rectangular surface that has intervals of three, one, one, and one
on its sides.

Scheme Transition Two_to_one creates three quads on a
rectangular surface that has intervals of two, two, one and one
on its sides :

Scheme Transition Convex_corner takes a six-sided block with
a convex corner and connects that inner corner to the opposite
one, creating two quads on the surface.

Scheme Transition Four_to_two creates seven quads on a
rectangular surface that has intervals of four, two, two, and two
on its sides.

The user also has the option of specifying a source curve and/or a source vertex. The rules for these specifications are as
follows

 If both a curve and vertex are specified, the vertex must be on the curve.

 The Convex_corner sub-type does not allow a source curve.

 The Four_to_two sub-type does not allow a source vertex.

 The source curve will be the curve that will be given the fewest intervals.

Transition

845

 The source vertex will specify which corner will be used for the scheme, in cases where this makes sense
(primarily in the Triangle, and Two_to_one cases).

 If none of the optional information is given, the program will assign the source curve to be the shortest one on
the face, in keeping with the most probable

847

Triangle Mesh Coarsening

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

CUBIT provides the capability for coarsening triangle surface meshes. Triangle coarsening uses a technique known as
edge collapsing to coarsen a mesh. With this technique, triangle edges are selectively eliminated from the mesh until the
specified criteria have been met. The following commands will coarsen an existing triangle surface mesh:

Coarsen {Node|Edge|Tri} <range> {Factor|Size <double> [Bias <double>]} [Depth <int>|Radius
<double>] [Sizing_Function] [no_smooth]

Coarsen {Vertex|Curve|Surface} <range> {Factor|Size<double> [Bias<double>]}
[Depth<int>|Radius<double>] [Sizing_Function] [no_smooth]

Important: These commands are currently implemented only for triangle shaped elements.

To use these commands, first select mesh or geometric entities at which you would like to perform coarsening.
Coarsening operations will be applied to all mesh entities associated with or within proximity of the entities. The all
keyword may be used to uniformly coarsen all triangles in the model.

Following is a description of each of the coarsen options:

Factor

Defines the approximate size relative to the existing edge lengths for which the coarsening will be applied. For example, a
factor of 2 will attempt to make every edge length within the specified region approximately twice the size. A factor of 3 will
make everything three times the size. Valid input values for factor must be greater than 1. Figure 1 shows an example
where a coarsening factor of 2 was applied

Figure 1. Example of coarsening all triangles with a factor of 2.

Size, Bias

The Size and Bias options are useful when a specific element size is desired at a known location. This might be used for
locally coarsening around a vertex or curve. The Bias argument can be used with the Size option to define the rate at
which the element sizes will change to meet the existing element sizes on the model. Valid input values for Bias are
greater than 1.0 and represent the maximum change in element size from one element to the next. Since coarsening is a
discrete operation, the Size and Bias options can only approximate the desired input values. This may cause apparent
discontinuities in the element sizes. Using the default smooth option can lessen this effect. It should also be noted that the
Size option is exclusive of the Factor option. Either Factor or Size can be specified, but not both.

Depth

Cubit 13.2 User Documentation

848

The Depth option permits the user to specify how many elements away from the specified entity will also be coarsened.
Default Depth is 1.

Figure 2. Coarsening performed at a node with factor = 3 and depth = 3

Radius

Instead of specifying the number of elements to describe how far to propagate the coarsening, a real Radius may be
entered.

Sizing Function

Coarsening may also be controlled by a sizing function. CUBIT uses sizing functions to control the local density of a
mesh. Various options for setting up a sizing function are provided, including importing scalar field data from an exodus
file. In order to use this option, a sizing function must first be specified on the surface on which the coarsening will be
applied. See Adaptive Meshing for a description of how to define a sizing function.

No_Smooth

The default mode for coarsening operations is to perform smoothing after coarsening the elements. This will generally
provide better quality elements. In some cases it may be necessary to retain the original node locations after coarsening.
The no_smooth option provides this capability.

849

Whisker Weave

Note: This feature is under development. The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

Applies to: Volumes

Summary: Research algorithm for all-hexahedral meshing of arbitrary 3D volumes

Syntax:

Volume <range> Scheme Weave

Related Commands:

Pillow Volume <range>

{Volume|Surface|Curve} <range> Mesh [Fixed|Free]

Set AutoWeaveShrink [on|off]

Set Statelist [on|off]

Discussion:

Whisker Weaving (Tautges, 96; Tautges, 95; Folwell, 98) is a volume meshing algorithm currently being researched and
is not released for general use. However, daring users may find the current form of the algorithm useful for mostly-convex
geometries.

Whisker Weaving holds the promise of being able to fill arbitrary geometries with hexahedra that conform to a fixed
surface mesh. The algorithm is based on the rich information contained in the Spatial Twist Continuum (STC) (Murdoch,
95), which is the grouping of the dual of an all-hexahedral mesh into an arrangement of surfaces called sheets. Given a
bounding quadrilateral surface mesh, Whisker Weaving constructs sheets advancing from the boundary inward. The
sheets are then modified so that the arrangement dualizes to a well defined hexahedral mesh. Once the primal hex-mesh
is generated, interior node positions are generated by smoothing.

Examples of meshes generated using the whisker weaving algorithm are shown in the following figure.

Cubit 13.2 User Documentation

850

Figure 1. Some simple Whisker Weaving meshes with good quality

Whisker Weaving Basic Commands

The basic steps for meshing a volume with Whisker Weaving are the following:

Set the meshing scheme for the volume to weave

Volume <range> Scheme Weave

Mesh the volume, which generates hexes

Mesh Volume <range>

Pillow the volume to remove certain additional degenerate hexes

Pillow Volume <range>

and typically, smooth the mesh to improve quality, e.g.

Volume <range> Smooth Scheme Condition Number

Smooth Volume <range>

Whisker Weaving Options

Currently, Whisker Weaving relies on being able to perturb the bounding quadrilateral mesh. However, a bounding
surface's mesh will not be changed if it is contained in another volume that is already meshed.

The user may also explicitly prevent Whisker Weaving from changing a bounding mesh by fixing it with the following
command:

{Volume|Surface|Curve} <range> Mesh [Fixed|Free]

The user may select an optional control strategy that doesn't change the surface mesh by setting AutoWeaveShrink off,
and setting Statelist on with the following commands:

Set AutoWeaveShrink [on|off]

Set Statelist [on|off]

Numerous developer commands are available for stepping through the algorithm, examining results, and toggling options.
These are available via the command line help but are not detailed here.

851

Available Colors

All color commands in CUBIT require the specification of a color name. The following table lists the colors available in
CUBIT at this time. The table lists the color number (#), color name, and the red, green, and blue components
corresponding to each color, for reference.

Number Color Name Red Green Blue

0 black 0.000 0.000 0.000

1 grey 0.500 0.500 0.500

2 green 0.000 1.000 0.000

3 yellow 1.000 1.000 0.000

4 red 1.000 0.000 0.000

5 magenta 1.000 0.000 1.000

6 cyan 0.000 1.000 1.000

7 blue 0.000 0.000 1.000

8 white 1.000 1.000 1.000

9 orange 1.000 0.647 0.000

10 brown 0.647 0.165 0.165

11 gold 1.000 0.843 0.000

12 lightblue 0.678 0.847 0.902

13 lightgreen 0.000 0.800 0.000

14 salmon 0.980 0.502 0.447

15 coral 1.000 0.498 0.314

16 pink 1.000 0.753 0.796

17 purple 0.627 0.125 0.941

18 paleturquoise 0.686 0.933 0.933

19 lightsalmon 1.000 0.627 0.478

Cubit 13.2 User Documentation

852

20 springgreen 0.000 1.000 0.498

21 slateblue 0.416 0.353 0.804

22 sienna 0.627 0.322 0.176

23 seagreen 0.180 0.545 0.341

24 deepskyblue 0.000 0.749 1.000

25 khaki 0.941 0.902 0.549

26 lightskyblue 0.529 0.808 0.980

27 turquoise 0.251 0.878 0.816

28 greenyellow 0.678 1.000 0.184

29 powderblue 0.690 0.878 0.902

30 mediumturquoise 0.282 0.820 0.800

31 skyblue 0.529 0.808 0.922

32 tomato 1.000 0.388 0.278

33 lightcyan 0.878 1.000 1.000

34 dodgerblue 0.118 0.565 1.000

35 aquamarine 0.498 1.000 0.831

36 lightgoldenrodyellow 0.980 0.980 0.824

37 darkgreen 0.000 0.392 0.000

38 lightcoral 0.941 0.502 0.502

39 mediumslateblue 0.482 0.408 0.933

40 lightseagreen 0.125 0.698 0.667

41 goldenrod 0.855 0.647 0.125

42 indianred 0.804 0.361 0.361

43 mediumspringgreen 0.000 0.980 0.604

44 darkturquoise 0.000 0.808 0.820

Available Colors

853

45 yellowgreen 0.604 0.804 0.196

46 chocolate 0.824 0.412 0.118

47 steelblue 0.275 0.510 0.706

48 burlywood 0.871 0.722 0.529

49 hotpink 1.000 0.412 0.706

50 saddlebrown 0.545 0.271 0.075

51 violet 0.933 0.510 0.933

52 tan 0.824 0.706 0.549

53 mediumseagreen 0.235 0.702 0.443

54 thistle 0.847 0.749 0.847

55 palegoldenrod 0.933 0.910 0.667

56 firebrick 0.698 0.133 0.133

57 palegreen 0.596 0.984 0.596

58 lightyellow 1.000 1.000 0.878

59 darksalmon 0.914 0.588 0.478

60 orangered 1.000 0.271 0.000

61 palevioletred 0.859 0.439 0.576

62 limegreen 0.196 0.804 0.196

63 mediumblue 0.000 0.000 0.804

64 blueviolet 0.541 0.169 0.886

65 deeppink 1.000 0.078 0.576

66 beige 0.961 0.961 0.863

67 royalblue 0.255 0.412 0.882

68 darkkhaki 0.741 0.718 0.420

69 lawngreen 0.486 0.988 0.000

Cubit 13.2 User Documentation

854

70 lightgoldenrod 0.933 0.867 0.510

71 plum 0.867 0.627 0.867

72 sandybrown 0.957 0.643 0.376

73 lightslateblue 0.518 0.439 1.000

74 orchid 0.855 0.439 0.839

75 cadetblue 0.373 0.620 0.627

76 peru 0.804 0.522 0.247

77 olivedrab 0.420 0.557 0.137

78 mediumpurple 0.576 0.439 0.859

79 maroon 0.690 0.188 0.376

80 lightpink 1.000 0.714 0.757

81 darkslateblue 0.282 0.239 0.545

82 rosybrown 0.737 0.561 0.561

83 mediumvioletred 0.780 0.082 0.522

84 lightsteelblue 0.690 0.769 0.871

85 mediumaquamarine 0.400 0.804 0.667

855

Element Numbering

This appendix describes the element node and side numbering conventions used in Exodus II files written by CUBIT. This
information is located here for convenience, but is identical to the information presented in the Exodus II manual; citation
Schoof, 95

Node Numbering

The node numbering used for the basic elements is shown Figure 1. Specific element types of lower order just contain the
number of nodes needed for those elements; for example, QUAD4 or QUAD elements use just the first four nodes shown
for quadrilaterals in Figure 1.

Figure 1. Local Node Numbering for CUBIT element types

Side Numbering

Element sides are used to specify boundary conditions that act over a length or area, for example pressure- or flux-type
boundary conditions. Each element side is represented in the Exodus II format by an element number and the local side
number for that element. The local side numbering for the basic elements is shown in Figure 2.

Figure 2. Local side numbering for CUBIT element types

Triangular Shell Element Numbering

A three-dimensional shell element with triangular topology will have the element type 'TRIANGLE'. This type can be
modified for different element orders by appending the number of nodes onto the end of the type. For example, a 6-node
shell could have the element type 'TRIANGLE6'. However, any element whose type begins with the 8 letters 'TRIANGLE'
in upper, lower, or mixed case will refer to an element with a triangular topology. The element can exist in either three-
space or two-space.

http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf

Cubit 13.2 User Documentation

856

Attributes:
1. If the element exists in two-space, there are no required attributes.

2. If the element exists in three-space, there is one required attribute which is the thickness of the shell.

3. If the number of attributes is equal to the number of nodes in the connectivity of the element, then the attributes are
assumed to specify the thickness of the element at each of the elements nodes. The ordering of the attributes matches
the ordering of the elements nodes.

Node Ordering

The node ordering of the 3D triangle matches the node ordering of the 2D triangle as shown in Figure 3.

Figure 3. Local Node Numbering for CUBIT triangular element types

Side Set Side Ordering

The sideset side ordering is different for the element in the 2D and 3D instances.

In 2D, the sideset side ordering matches what is shown in Figure 4.

Figure 4. Local sideset numbering for CUBIT triangular element types

In 3D, the sideset side and node ordering is the same as for a quad shell except that there are only 3 or 6 nodes.

Then:

side 1 == {1,2,3}
side 2 == {3,2,1}
side 3 == {1,2}
side 4 == {2,3}
side 5 == {3,1}

If it is a higher order triangular shell (6 or 7 nodes), then the higher-order nodes are added on to the end of the above:

Element Numbering

857

side 1 == {1,2,3,4,5,6,7}
side 2 == {3,2,1,6,5,4,7}
side 3 == {1,2,4}
side 4 == {2,3,5}
side 5 == {3,1,6}

859

FullHex vs. NodeHex Representation

CUBIT has two different internal representations of hexes: FullHexes and NodeHexes. The NodeHex is a lighter weight
data structure, but occasionally nodeset and sideset shortcomings can be overcome by using FullHexes. The user can
select which type of hexes get created when generating or importing a volume mesh with the following command:

Set FullHex [Use] [on|OFF]

Using the FullHex representation increases the memory used to store a mesh by a factor of approximately five.

861

APREPRO Syntax

Within CUBIT, APREPRO expressions must be written inside of curly braces {}. For example, the following is a valid
CUBIT command:

Curve 1 Size {sqrt(2.0)}

 this will set the mesh size on curve 1 to 1.414214....(the square root of 2)

APREPRO expressions can also exist on separate lines as follows:

#{_numSeat=30}

 this will set the variable _numSeat to be equal to 30

 instead of a # you can use $ (i.e., ${_numSeat=30}

As in the example, separate line expressions must exist within commented lines. There is an exception though - looping
expressions must exist on non-commented lines. See Additional Functionality .

863

APREPRO Rules

The rules that APREPRO uses when identifying functions, variables, numbers, operators, delimiters, and expressions are
described below:

1. Functions

Function names are sequences of letters and digits and underscores (_) that begin with a letter. The function's arguments
are enclosed in parentheses. For example, in the line atan2(a,1.0), atan2 is the function name, and a and 1.0 are the
arguments. See APREPRO Functions for a list of the available functions and their arguments.

2. Variables

A variable is a name that references a numeric or string value. A variable is defined by giving it a name and assigning it a
value. For example, the expression a = 1.0 defines the variable a with the numeric value 1.0; the expression b= "A
string" defines the variable b with the value "A string". Variable names are sequences of letters, digits, and underscores
(_) that begin with either a letter or an underscore. Variable names cannot match any function name and they are case-
sensitive, that is, abc_de and AbC_dE are two distinct variable names. A few variables are predefined, these are listed in
APREPRO Predefined Variables. Any variable that is not defined is equal to 0. A warning message is output to the
terminal if an undefined variable is used, or if a previously defined variable is redefined. To see a list of all of the current
APREPRO variables use the DUMP() command.

3. Numbers

Numbers can be integers like 1234, decimal numbers like 1.234, or in scientific notation like 1.234E-26. All numbers are
stored internally as floating point numbers.

4. Strings

Strings are sequences of numbers, characters, and symbols that are delimited by either single quotes ('this is a string')
or double quotes ("this is another string"). Strings that are delimited by one type of quote can include the other type of
quote. For example, {'This is a valid "string"'}. Strings delimited by single quotes can span multiple lines; strings
delimited by double quotes must terminate on a single line or a parsing error message will be issued.

5. Operators

Operators are any of the symbols defined in APREPRO Operators. Examples are + (addition), - (subtraction), *
(multiplication), / (division), = (assignment), and ^ (exponentiation).

6. Delimiters

The delimiters recognized by APREPRO are: the comma (,) which separates arguments in function lists, the left curly
brace ({) which begins an expression, the right curly brace (}) which ends an expression, the left parenthesis (which
begins a function argument list, the right parenthesis) which ends a function argument list, the single quote (') which
delimits a multi-line string, and the double quote (") which delimits a single-line string.

7. Expressions

An expression consists of any combination of numeric and string constants, variables, operators, and functions. Four
types of expressions are recognized in APREPRO: algebraic, string, relational, and conditional.

8. Algebraic Expressions

Almost any valid FORTRAN or C algebraic expression can be recognized and evaluated by APREPRO. An expression of
the form a=b+10/37.5 will evaluate the expression on the right-hand-side of the equals sign and assign the value to the
variable a. An expression of the form b+10/37.5 will simply evaluate the expression. Variables can also be set on the
command line prior to playing any journal files using the 'var=val' syntax. Only a single expression is allowed within the { }
delimiters. For example, {x = sqrt(y^2 + sin(z))}, {x=y=z}, and {x=y} {a=z} are valid expressions, but {x=y a=z} is invalid
because it contains two expressions within a single set of delimiters.

Cubit 13.2 User Documentation

864

9. String Expressions

APREPRO has very limited string support. The only supported operations are assigning a variable equal to a string (a =
"This is a string") or a function that returns a string, and concatenating two strings into another string (a = "Hello" // " " //
"World").

10. Relational Expressions

Relational expressions are expressions that return the result of comparing two expressions. A relational expression is
either true or false. Relational expressions can only be used on the left-hand side of a conditional expression. A relational
expression is simply two expressions of any kind separated by a relational operator. See Relational Operators.

11. Conditional Expressions

APREPRO recognizes a conditional expression of the form::

relational_expression ? true_exp : false_exp

where relational_expression can be any valid relational expression, and true_exp and false_exp are two algebraic
expressions. If the relational expression is true, then the result of true_exp is returned, otherwise the result of false_exp
is returned. For example, if the following command were entered:

#{a = (sind(20.0) > cosd(20.0) ? 1 : -1)}

then, a would be assigned the value -1 since the relational expression to the left of the question mark is false. Both
true_exp and false_exp are always evaluated prior to valuating the relational expression. Therefore, you should not write
an equation such as

#{sind(20.0*a)>cosd(20.0*a) ? a=sind(20.0) : a=cosd(20.0)}

since the value of a can change during the evaluation of the expression. Instead, this equation should be written as:

#{a = (sind(20.0*a)>cosd(20.0*a) ? sind(20.0) : cosd(20.0))}

865

APREPRO Operators

The operators recognized by APREPRO are listed below.

 Arithmetic Operators

 Assignment Operators

 Relational Operators

 Boolean Operators

 String Operators

In the following table, the letters a and b can represent variables, numbers, functions, or expressions unless otherwise
noted. The tables below also list the precedence and associativity of the operators. Precedence defines the order in which
operations should be performed. For example, in the expression:

3 * 4 + 6 / 2

the multiplications and divisions are performed first, followed by the addition because multiplication and division have
higher precedence than addition. The precedence is listed from 1 to 14 with 1 being the lowest precedence and 14 being
the highest.

Associativity defines which side of the expressions should be simplified first. For example the expression: 3 + 4 + 5 would
be evaluated as (3 + 4) + 5 for left associativity, the expression a = b / c would be evaluated as a = (b / c) for right
associativity.

1. Arithmetic Operators

Arithmetic operators combine two or more algebraic expressions into a single algebraic expression. These have obvious
meanings except for the pre- and post- increment and decrement operators. The pre-increment and pre-decrement
operators first increment or decrement the value of the variable and then return the value. For example, if a = 1, then
b=++a will set both b and a equal to 2. The post-increment and post-decrement operators first return the value of the
variable and then increment or decrement the variable. For example, if a = 1, then b=a++ will set b equal to 1 and a equal
to 2. The modulus operator % calculates the integer remainder. That is both expressions are truncated an integer value
and then the remainder calculated. See the fmod function in Mathematical Functions, for the calculation of the floating
point remainder. The tilde character ~ is used as a synonym for multiplication to improve the aesthetics of the APREPRO
unit conversion system (however, the unit conversions system is not supported in CUBIT). It is more natural for some
users to type 12~metre than 12*metre

Table 1. Arithmetic Operators

Syntax Description Precedence Associativity

a+b Addition 9 left

a-b Subtraction 9 left

a*b, a~b Multiplication 10 left

a/b Division 10 left

a^b, a**b Exponentiation 12 right

a%b Modulus (remainder) 10 left

++a, a++ Pre-, post-increment 13 left

Cubit 13.2 User Documentation

866

--a, a-- Pre-, post-decrement 13 left

2. Assignment Operators

Assignment operators combine a variable and an algebraic expression into a single algebraic expression, and also set the
variable equal to the algebraic expression. Only variables can be specified on the left-hand-side of the equal sign.

Table 2. Assignment Operators

Syntax Description Precedence Associativity

a=b The value of 'a' is set equal to
'b'

1 right

a+=b The value of 'a' is set equal to
a + b

2 right

a-=b The value of 'a' is set equal to
a - b

2 right

a*=b The value of 'a' is set equal to
a * b

3 right

a/=b The value of 'a' is set equal to
a / b

3 right

a^=b The value of 'a' is set equal to
a

b

4 right

a**=b The value of 'a' is set equal to
a

b

4 right

3. Relational Operators

Relational operators combine two algebraic expressions into a single relational expression. Relational expressions and
operators can only be used before the question mark (?) in a conditional expression.

Table 3. Relational Operators

Syntax Description Precedence Associativity

a<b true if 'a' is less than 'b' 8 left

a>b true if 'a' is greater than 'b' 8 left

a<=b true if 'a' is less than or
equal to 'b'

8 left

a>=b true if 'a' is greater than or
equal to 'b'

8 left

a==b true if 'a' is equal to 'b' 8 left

a!=b true if 'a' is not equal to 'b' 8 left

APREPRO Operators

867

4. Boolean Operators

Boolean operators combine one or more relational expressions into a single relational expression. If la and lb are two
relational expressions, then:

Table 4. Boolean Operators

Syntax Description Precedence Associativity

1a || 1b true if either 'la' or 'lb' are
true.

6 left

1a && 1b true if both 'la' and 'lb' are
true.

7 left

!1a true if 'la' is false. 11 left

5. String Operators

The only supported string operator at this time is string concatenation, which is denoted by //. If a = "Hello" and b =
"World", then:

c = a // " " // b

sets c equal to "Hello World". Concatenation has precedence 14 and left associativity. Also see String Functions

869

APREPRO Predefined Variables

A few commonly used variables are predefined in APREPRO. These are listed below. The default output format is
specified as a C language format string, see your C language documentation for more information. The default format and
comment variables are defined with a leading underscore in their name so they can be redefined without generating an
error message.

Table 1. Predefined Variables

Name Value Description

PI 3.14159265358979323846 pi

PI_2 1.57079632679489661923 pi/2

SQRT2 1.41421356237309504880

DEG 57.2957795130823208768 180 /pi degrees per radian

RAD 0.01745329251994329576 pi/180 radians per degree

E 2.71828182845904523536 base of natural logarithm

GAMMA 0.57721566490153286060 euler-mascheroni constant
1

PHI 1.61803398874989484820
golden ratio (+ 1)/2

VERSION Varies, string value current version of CUBIT

_ FORMAT "%.10g" default output format

C "#" default comment character

1 The euler-mascheroni constant is defined as the limit of 1 + 1/2 + ... + 1/s - log(s) as s approaches infinity.

Note that the output format is used to output both integers and floating point numbers. Therefore, it should use the %g
format descriptor which will use either the decimal (%d), exponential (%e), or float (%f) format, whichever is shorter, with
insignificant zeros suppressed. The table below illustrates the effect of different format specifications on the output of the
variable PI and the value 1.0 . See the documentation of your C compiler for

Table 2. Effect of Various Output Format Specifications more information. For most cases, the default value is
sufficient.

Format PI Output 1.0 Output

%.10g 3.141592654 1

%.10e 3.1415926536e+00 1.0000000000e+00

%.10f 3.1415926536 1.0000000000

Cubit 13.2 User Documentation

870

%.10d 1413754136 0000000000

871

APREPRO Units

Cubit uses a unitless coordinate system. For example, the command brick x 10 creates a cube 10 units wide, but Cubit
does not know whether those 10 units are 10 inches, 10 meters, 10 microns or 10 miles. The Aprepro Units() function
facilitates the use of a unit system in Cubit's unitless environment.

The Aprepro Units(svar) function takes a single string parameter which identifies the desired unit system. If the specified
unit system is recognized, then a set of variables are defined to facilitate working in that unit system. Dimensions can be
multiplied by an appropriate unit variable to convert between various dimensions. For example, the statement #{Units("in-
lbf-s")} defines variables useful when working in a coordinate system where one Cubit unit is one inch. The command
brick x {1*ft} will create a cube 12 units wide, and the command brick x {1*m} will create a cube 39.37 units wide, the
number of inches in 1 meter.

It is important to note that the Units() function does nothing more than define a set of useful variables. The function does
not change the dimensions of existing geometry, nor does it change the scale of geometry imported from a file. For
example, the following commands create two cubes, the first being 12 units wide and the second being 1 unit wide. The
first cube remains 12 units wide, even after the second call to the Units() function:

#{Units("in-lbf-s")}
brick x 1*ft
#{Units("ft-lbf-s")}
brick x 1*ft

The Units() function returns a zero-length string if it is successful. If the Units() function fails (usually because the specified
unit system was not recognized), a non-zero-length string containing an error message is returned.

The unit systems currently supported by the Units() function are: si, cgs, cgs-ev, shock, swap, ft-lbf-s, ft-lbm-s, in-lbf-s. For
each of these unit systems, the following variables are defined by the Units() function:

Table 1. String Variables

Name Value

Tout Base Time Unit

lout Base Length Unit

Aout Base Acceleration Unit

Mout Base Mass Unit

fout Base Force Unit

vout Base Velocity Unit

Vout Base Volume Unit

dout Base Density Unit

eout Base Energy Unit

Pout Base Power Unit

pout Base Pressure Unit

Tout Base Temperature Unit

Cubit 13.2 User Documentation

872

Aout Base Angle Unit

Time Variables

 sec

 second

 usec

 microsecond

 msec

 millisecond

 minute

 hr

 hour

 day

 yr

 year

 decade

 century

Length Variables

 m

 meter

 metre

 cm

 centimeter

 centimetre

 mm

 millimeter

 millimetre

 um

 micrometer

 micrometre

 km

 kilometer

 kilometre

 ft

 foot

 mi

 mile

 yd

 yard

 in

 inch

 mil

Acceleration Variables

 ga

Force Variables

 newton

 N

APREPRO Units

873

 dyne

 lbf

 kip

 kgf

 gf

 pdl

 poundal

 ounce

Mass Variables

 kg

 gram

 g

 lbm

 slug

 lbfs2pin

Velocity Variables

 mps

 fps

 mph

 ips

 kph

 kps

Volume Variables

 liter

 gal

 gallon

Density Variables

 gpcc

 kgpm3

 lbfs2pin4

 lbmpin3

 lbmpft3

 slugpft3

Power Variables

 W

 watt

 Hp

Energy Variables

 joule

 J

 ftlbf

 Btu

Cubit 13.2 User Documentation

874

 erg

 calorie

 kwh

 therm

 tonTNT

Pressure Variables

 Pa

 pascal

 MPa

 GPa

 bar

 kbar

 Mbar

 psi

 ksi

 psf

 atm

 torr

 mHg

 mmHg

 inHg

 inH2O

 ftH20

Temperature Variables

 degK

 kelvin

 degC

 degF

 degR

 rankine

 eV

Angular Variables

 rad

 rev

 deg

 degree

 arcmin

 arcsec

 grade

875

APREPRO Functions

Several mathematical, CUBIT and string functions are implemented in APREPRO.

 Mathematical Functions

 CUBIT Functions

 String Functions

To cause a function to be used, you enter the name of the function followed by a list of zero or more arguments in
parentheses. For example

sqrt(min(a,b*3))

uses the two functions sqrt() and min(). The arguments a and b*3 are passed to min(). The result is then passed as an
argument to sqrt(). The functions in APREPRO are listed below along with the number of arguments and a short
description of their effect.

1. Mathematical Functions

The following mathematical functions are available in APREPRO.

Table 1. Mathematical Functions

Syntax Description

abs(x) Calculates the absolute value of x. |x|

acos(x) Calculates the inverse cosine of x, returns radians

acosd(x) Calculates the inverse cosine of x, returns degrees

acosh(x) Calculates the inverse hyperbolic cosine of x

asin(x) Calculates the inverse sine of x, returns radians

asind(x) Calculates the inverse sine of x, returns degrees

asinh(x) Calculates the inverse hyperbolic sine of x

atan(x) Calculates the inverse tangent of x, returns radians

atan2(y,x) Calculates the inverse tangent of y/x, returns radians

atan2d(y,x) Calculates the inverse tangent of y/x, returns degrees

atand(x) Calculates the inverse tangent of x, returns degrees

atanh(x) Calculates the inverse hyperbolic tangent of x

ceil(x) Calculates the smallest integer not less than x

Cubit 13.2 User Documentation

876

cos(x) Calculates the cosine of x, with x in radians

cosd(x) Calculates the cosine of x, with x in degrees

cosh(x) Calculates the hyperbolic cosine of x

d2r(x) Converts degrees to radians.

dim(x,y) Calculates x - min(x,y).

dist(x1,y1, x2,y2) Calculates distance from x1,y1 to x2,y2

exp(x) Calculates e
x
 (Exponential)

floor(x) Calculates the largest integer not greater than x.

fmod(x,y) Calculates the floating-point remainder of x/y.

hypot(x,y) Calculates sqrt(x
2
+y

2
)

int(x), [x] Calculates the integer part of x truncated toward 0.

julday(mm, dd, yy) Calculates the Julian day corresponding to mm/dd/yy.

juldayhms (mm, dd, yy, hh,
mm, ss)

Calculates the Julian day corresponding to mm/dd/yy at hh:mm:ss

lgamma(x) Calculates log(G(x))

ln(x), log(x) Calculates the natural (base e) logarithm of x.

log1p(x) Calculates log(1+x)

log10(x) Calculates the base 10 logarithm of x.

max(x,y) Calculates the maximum of x and y.

min(x,y) Calculates the minimum of x and y.

polarX(r,a) Calculates r ´ cos(a), a is in degrees

polarY(r,a) Calculates r ´ sin(a), a is in degrees

r2d(x) Converts radians to degrees.

rand(xl,xh) Calculates a random number between xl and xh.

sign(x,y) Calculates x ´ sgn(y)

sin(x) Calculates the sine of x, with x in radians.

APREPRO Functions

877

sind(x) Calculates the sine of x, with x in degrees.

sinh(x) Calculates the hyperbolic sine of x

sqrt(x) Calculates the square root of x.

tan(x) Calculates the tangent of x, with x in radians.

tand(x) Calculates the tangent of x, with x in degrees.

tanh(x) Calculates the hyperbolic tangent of x.

Vangle(x1,y1, x2,y2) Calculates the angle between the vector x1i + y1j and x2i + y2j. Returns radians.

Vangled(x1,y1, x2,y2) Calculates the angle between the vector x1i + y1j and x2i + y2j. Returns degrees.

2. CUBIT Functions

The following CUBIT Functions are available:

Table 2. CUBIT Functions

Syntax Description

get_error_count() Gets the current error count in CUBIT

set_error_count(val) Sets the error count in CUBIT to given value

get_warning_count() Gets the current warning count in CUBIT

set_warning_count(val) Sets the warning count in CUBIT to value

Id("type")
Returns the ID of the entity most recently created with the specified type.
Acceptable types include: "body", "volume", "surface", "curve", "vertex", "group",
"node", "edge", "quad", "face", "tri", "hex", "tet", or "pyramid".

IntNum(id) Returns the number of intervals on a curve with the given id.

IntNum(x, y, z, ord)
Returns the number of intervals on a curve identified by the given center point
coordinates and ordinal value.

IntSize(id) Returns the interval size on a curve with the given id.

IntSize(x, y, z, ord)
Returns the interval size on a curve identified by the given center point coordinates
and ordinal value.

Volume(id) Gets the geometric volume of the volume with the given id.

Volume(x, y, z, ord)
Gets the geometric volume of the volume identified by the given center point
coordinates and ordinal value.

SurfaceArea(id) Returns the surface area of the surface with the given id.

SurfaceArea(x, y, z, ord)
Returns the surface area of the surface identified by the given center point

Cubit 13.2 User Documentation

878

coordinates and ordinal value.

Length(id) Returns the length of the curve with the given id.

Length(x, y, z, ord)
Returns the length of the curve identified by the given center point coordinates and
ordinal value.

Radius(id) Returns the radius of the curve at its midpoint.

Radius(x, y, z, ord)
Returns the radius of the curve identified by the given center point coordinates and
ordinal value.

MinVolumeMeshQuality(id,
"metric")

Returns the worst value of the specified element quality metric of all elements in the
volume with the given id.

Acceptable metrics include:
shape
aspect ration bet
aspect ratio gam
aspect ratio
condition no
diagonal ratio
dimension
distortion
element volume
jacobian
relative size
scaled jacobian
shape and size
shear and size
shear
skew
stretch
taper

MinVolumeMeshQuality(x, y, z,
ord, "metric")

Returns the worst value of the specified element quality metric of all elements in the
volume identified by the given center point coordinates and ordinal value.

Acceptable metrics include:
shape
aspect ration bet
aspect ratio gam
aspect ratio
condition no
diagonal ratio
dimension
distortion
element volume
jacobian
relative size
scaled jacobian
shape and size
shear and size
shear
skew
stretch
taper

MinSurfaceMeshQuality(id,
"metric")

Returns the worst value of the specified element quality metric of all elements on
the given surface.

Acceptable metrics include:
shape
aspect ratio
condition no

APREPRO Functions

879

distortion
element area
jacobian
maximum angle
minimum angle
relative size
scaled jacobian
shape and size
shear and size
shear
skew
stretch
taper
warpage

MinSurfaceMeshQuality(x, y, z,
ord, "metric")

Returns the worst value of the specified element quality metric of all elements on
the surface identified by the given center point coordinates and ordinal value.

Acceptable metrics include:
shape
aspect ratio
condition no
distortion
element area
jacobian
maximum angle
minimum angle
relative size
scaled jacobian
shape and size
shear and size
shear
skew
stretch
taper
warpage

MeshVolume(id)
Returns the total volume of all mesh elements in the volume with the given id. This
will vary from the actual geometric volume since the mesh approximates curved
boundaries with linear mesh edges.

MeshVolume(x, y, z, ord)
Returns the total volume of all mesh elements in the volume identified by the given
center point coordinates and ordinal value. This will vary from the actual geometric
volume since the mesh approximates curved boundaries with linear mesh edges.

HexVolume(id) Returns the volume of the hex with the given id.

HexVolume(x, y, z, ord)
Returns the volume of the hex identified by the given center point coordinates and
ordinal value.

TetVolume(id) Returns the volume of the tet with the given id.

TetVolume(x, y, z, ord)
Returns the volume of the tet identified by the given center point coordinates and
ordinal value.

FaceArea(id) Returns the area of the face with the given id.

FaceArea(x, y, z, ord)
Returns the area of the face identified by the given center point coordinates and
ordinal value.

TriArea(id) Returns the area of the tri with the given id.

Cubit 13.2 User Documentation

880

TriArea(x, y, z, ord)
Returns the area of the tri identified by the given center point coordinates and
ordinal value. .

MeshSurfaceArea(id)
Returns the total area of all triangle or quadrilateral elements on the surface with
the given id. This will vary from the geometric surface area since the mesh
approximates the boundary with linear mesh edges.

MeshSurfaceArea(x, y, z, ord)

Returns the total area of all triangle or quadrilateral elements on the
surface identified by the given center point coordinates and ordinal value. This will
vary from the geometric surface area since the mesh approximates the boundary
with linear mesh edges.

EdgeLength(id) Returns the length of the edge with the given id.

EdgeLength(x, y, z, ord)
Returns the length of the edge identified by the given center point coordinates and
ordinal value.

MeshLength(id) Gets the length of the meshed curve with the given id.

MeshLength(x, y, z, ord)
Gets the length of the meshed curve identified by the given center point coordinates
and ordinal value.

Nx(id), Ny(id), Nz(id) Gets the x, y or z coordinate of node with the given id.

Nx(x, y, z, ord)
Gets the x, y or z coordinate of node identified by the given center point coordinates
and ordinal value.

Ny(x, y, z, ord)
Gets the x, y or z coordinate of node identified by the given center point coordinates
and ordinal value.

Nz(x, y, z, ord)
Gets the x, y or z coordinate of node identified by the given center point coordinates
and ordinal value.

Vx(id), Vy(id), Vz(id) Gets the x, y or z coordinate of vertex with the given id.

Vx(x, y, z, ord)
Gets the x, y or z coordinate of vertex identified by the given center point
coordinates and ordinal value.

Vy(x, y, z, ord)
Gets the x, y or z coordinate of vertex identified by the given center point
coordinates and ordinal value.

Vz(x, y, z, ord)
Gets the x, y or z coordinate of vertex identified by the given center point
coordinates and ordinal value.

NumInGrp("groupname") Returns the number of entities in the given group.

NumEdgesOnCurve(id) Returns the number of edges on the curve with the given id.

NumEdgesOnCurve(x, y, z, ord)
Returns the number of edges on the curve identified by the given center point
coordinates and ordinal value.

NumElemsOnSurface(id) Returns the number of elements on the surface with the given id.

NumElemsOnSurface(x, y, z, ord)
Returns the number of elements on the surface identified by the given center point
coordinates and ordinal value.

NumElemsInVolume(id) Returns the number of elements in the volume with the given id.

APREPRO Functions

881

NumElemsInVolume(x, y, z, ord)
Returns the number of elements in the volume identified by the given center point
coordinates and ordinal value.

NumVolumes() Returns the number of volumes in the model.

NumSurfaces() Returns the number of surfaces in the model.

NumCurves() Returns the number of curves in the model.

NumVertices() Returns the number of vertices in the model.

NumVolsInPart("part_name") Returns the number of volumes assigned to the part with the specified name.

PartInVol(id)
Returns the name and instance number of the part that the volume has been
assigned to.

SessionId() Returns a unique ID for each Cubit session.

DUMP() Returns a list of all APREPRO variables with their values.

delete("var") Deletes the APREPRO variable with the name var.

3.String Functions

A few useful string functions are available:

Table 3. String Functions

Syntax Description

tolower(svar) Translates all uppercase characters in svar to lowercase. It modifies svar and
returns the resulting string.

toupper(svar) Translates all lowercase character in svar to uppercase. It modifies svar and
returns the resulting string.

execute(svar) svar is parsed and executed as if it were a line read from the input file. For
example,

if svar="b=sqrt(25.0)", then
#{execute(svar)}

returns the value 5 and sets b = 5. The expression svar is enclosed in
delimiters prior to being executed, and it must be a valid expression or an error
message will be printed.

rescan(svar) Similar to execute(svar), except that svar is not enclosed in delimiters prior to
being executed. For example,

if svar = "Create Vertex {1+5} {sqrt(5)} {sqrt(6)}", then
#{rescan(svar)}

would print:

Create Vertex 6 2.236067977 2.449489743.

The difference between execute(sv1) and rescan(sv2) is that sv1 must be a
valid expression, but sv2 can contain zero or more expressions.

Cubit 13.2 User Documentation

882

getenv(svar) Returns a string containing the value of the environment variable svar. If the
environment variable is not defined, an empty string is returned.

get_word(n,svar,del) Returns a string containing the nth word of svar. The words are separated by
one or more of the characters in the string variable del

word_count(svar,del) Returns the number of words in svar. Words are separated by one or more of
the characters in the string variable del

strtod(svar) Returns a double-precision floating-point number equal to the value
represented by the character string pointed to by svar.

PrintError(svar) Outputs the string svar to stderr.

error(svar) Outputs the string svar to stderr and then terminates the code with an error
exit status

Quote(svar) Returns the string svar, enclosed in double quotes.

Units(svar) Sets variables useful for working in a unit system. See APREPRO Units.

The following example shows the use of some of the string functions.

#{t1 = "ATAN2"} {t2 = "(0, -1)"}

#{t3 = tolower(t1//t2)}

...The variable t3 is equal to the string atan2(0, -1)

#{execute(t3)}

...t3 = 3.141592654

The result is the same as executing {atan2(0, -1)}

This is admittedly a very contrived example; however, it does illustrate the workings of several of the functions. In the first
example, an expression is constructed by concatenating two strings together and converting the resulting string to
lowercase. This string is then executed.

The following example uses the rescan function to illustrate a basic macro capability in APREPRO. The example creates
vertices in CUBIT equally spaced about the circumference of a 180 degree arc of radius 10. Note that the macro is 5 lines
long (3 of the lines start with #, with the exception of the looping constructs - the actual journal file for this would not
continue lines but would put each one on one long line).

#{num = 0} {rad = 10} {nintv = 10} {nloop = nintv + 1}

#{line = 'Create Vertex {polarX(rad, (++num-1) * 180/nintv)} {polarY(rad, (num-1) * 180/nintv)}'}

#{loop(nloop)}

#{rescan(line)}

#{endloop}

Output:

Create Vertex 10 0

Create Vertex 9.510565163 3.090169944

Create Vertex 8.090169944 5.877852523

APREPRO Functions

883

Create Vertex 5.877852523 8.090169944

Create Vertex 3.090169944 9.510565163

Create Vertex 6.123233765e-16 10

Create Vertex -3.090169944 9.510565163

Create Vertex -5.877852523 8.090169944

Create Vertex -8.090169944 5.877852523

Create Vertex -9.510565163 3.090169944

Create Vertex -10 1.224646753e-15

Note the loop construct to automatically repeat the rescan line. To modify this example to calculate the coordinates of 101
points rather than eleven, the only change necessary would be to set {nintv=100}.

885

APREPRO Additional Functionality

Additional APREPRO Functionality includes the following:

 File Inclusion

 Conditionals

 Loops

1. File Inclusion

APREPRO can read input from multiple files using the include() and cinclude() functions. If a line of the form:

{include(" filename")}

{include(string_variable)}

is read, APREPRO will open and begin reading from the file filename. A string variable can be used as the argument
instead of a literal string value. When the end of the file is reached, it will be closed and APREPRO will continue reading
from the previous file. The difference between include and cinclude is that if filename does not exist, include will
terminate APREPRO with a fatal error, but cinclude will just write a warning message and continue with the current file.
The cinclude function can be thought of as a conditional include, that is, include the file if it exists. Multiple include files
are allowed and an included file can also include additional files. Approximately 16 levels of file inclusion can be used.
This option can be used to set variables globally in several files. For example, if two or more input files share common
points or dimensions, those dimensions can be set in one file that is included in the other files.

2. Conditionals

Portions of an input file can be conditionally processed through the use of the {Ifdef(variable)} or Ifndef(variable)}
constructs. The syntax is:

#{Ifdef(variable)}

...Lines processed if 'variable' is not equal to 0

#{Else}

...Lines processed if 'variable' is equal to 0 or undefined

#{Endif}

#{Ifndef(variable)}

...Lines processed if 'variable' is equal to 0 or undefined

#{Else}

...Lines processed if 'variable' is not equal to 0

#{Endif}

The {Else} is optional. Note that if variable is undefined, its value is equal to zero. Ifdef constructs can be nested up to
approximately 16 levels. A warning message will be printed if improper nesting is detected. Ifdef(variable)},
{Ifndef(variable)}, {Else}, and {Endif} are the only text parsed on a line. Text following these on the same line is ignored.

3. Loops

Repeated processing of a group of lines can be controlled with the {loop(control)}, {endloop} commands. The syntax is:

{loop(variable)}

Cubit 13.2 User Documentation

886

...Process these lines 'variable' times

{endloop}

Loops can be nested. A numerical variable or constant must be specified as the loop control specifier. You currently
cannot use an algebraic expression such as {loop(3+5)}.

A loop may also be exited before running the specified number of times using a #{Break} statement. As soon as a
#{Break} statement is encountered, the loop is exited and the rest of the statements in the loop will not execute.
Additional iterations of the loop will not be executed either. For example, the following commands will create 3 bricks:

#{x=1}
#{Loop(10)}
 brick x 1
 #{If(x==2)}
 #{Break}
 #{EndIf}
 #{x++}
 brick x 1
#{EndLoop}

When a #{Break} statement executes, anything in the loop following the #{Break} statement will be skipped, including
the #{EndIf}. For this reason, a #{Break} statement not only exits the loop, but also terminates the most recent #{If}
statement exactly as #{EndIf} would do. #{Break} statements should not be used outside of #{If} statements.

887

APREPRO Journaling

When using APREPRO, statements can be echoed to a journal file. To do so, use the following command:

[set] Journal [Graphics|Names|Aprepro|Errors] [on|off]

Simply typing "journal aprepro" without an argument will display the current aprepro journaling setting.

For example,

bri x {2*5.0}

is journaled as

brick x {2*5.0}

if aprepro journaling is ON, or

brick x 10

if aprepro journaling is off. The default is ON.

APREPRO Comments

Comments are also journaled. This is useful for documenting aprepro definitions and descriptions.

Comments on the same line as a command get split into two separate lines in the journal file.

Significant Figures

When journal aprepro is ON, numbers are journaled exactly as they are entered. The maximum number of significant
digits is determined by the command input.

When journal aprepro is off, numeric results of aprepro statements are journaled according to the maximum number of
significant digits hard-coded into CUBIT, using the value of DBL_DIG.

889

CubitInterface

The CubitInterface provides a Python/C++ interface into Cubit.

It provides an object oriented structure that allows a developer to manipulate objects familiar to Cubit such as bodies,
volumes, surfaces, etc. It also allows developers to create and manipulate as well as query geometry.

Class Member Functions

 init Use init to initialize Cubit. Using a blank list as the input
parameter is acceptable.

 destroy Closes the current journal file.

 set_cubit_interrupt This sets the global flag in Cubit that stops all interruptable
processes.

 set_playback_paused_on_error Sets whether or not playback is paused when an error
occurs.

Bool is_playback_paused_on_error Gets whether or not playback is paused when an error
occurs.

Bool developer_commands_are_enabled This checks to see whether developer commands are
enabled.

str get_version Get the Cubit version.

str get_revision_date Get the Cubit revision date.

str get_build_number Get the Cubit build number.

str get_acis_version Get the Acis version number.

int get_acis_version_as_int Get the Acis version number as an int.

str get_exodus_version Get the Exodus version number.

str get_graphics_version Get the VTK version number.

 print_cmd_options Used to print the command line options.

Bool is_modified Get the modified status of the model.

 set_modified Set the status of the model (is_modified() is now false). If
you modify the model after you set this flag, it will register
true.

Bool is_undo_save_needed Get the status of the model relative to undo checkpointing.

 set_undo_saved Set the status of the model relative to undo checkpointin.

Bool is_command_echoed Check the echo flag in cubit.

Bool is_volume_meshable Check if volume is meshable with current scheme.

Cubit 13.2 User Documentation

890

 journal_commands Set the journaling flag in cubit.

Bool is_command_journaled Check the journaling flag in cubit.

str get_current_journal_file Gets the current journal file name.

 cmd Pass a command string into Cubit.

 silent_cmd Pass a command string into Cubit and have it executed
without being verbose at the command prompt.

[int] parse_cubit_list Parse a Cubit style list of IDs (1,2,4 to 19 by 3 or all) into a
list of integers.

 print_raw_help Used to print out help when a ?, & or ! is pressed.

int get_error_count Get the number of errors in the current Cubit session.

[str] get_mesh_error_solutions Get the paired list of mesh error solutions and help context
cues.

float get_view_distance Get the distance from the camera to the model (from - at).

[float] get_view_at Get the camera 'at' point.

[float] get_view_from Get the camera 'from' point.

 reset_camera reset the camera in all open windows this includes resetting
the view, closing the histogram and color windows and
clearing the scalar bar, highlight, and picked entities.

 unselect_entity Unselect an entity that is currently selected.

Bool is_perspective_on Get the current perspective mode.

Bool is_occlusion_on Get the current occlusion mode.

Bool is_scale_visibility_on Get the current scale visibility setting.

Bool is_select_partial_on Get the current select partial setting.

int get_rendering_mode Get the current rendering mode.

 set_rendering_mode Set the current rendering mode.

 clear_preview Clear preview graphics without affecting other display
settings.

str get_pick_type Get the current pick type.

float get_mesh_edge_length Get the length of a mesh edge.

float get_meshed_volume_or_area Get the total volume/area of a entity's mesh.

CubitInterface Class Reference

891

int get_mesh_intervals Get the interval count for a specified entity.

float get_mesh_size Get the mesh size for a specified entity.

float get_auto_size Get the auto size for a given set of volumes. Note, this does
not actually set the interval size on the volumes. It simply
returns the size that would be set if an 'size auto factor n'
command were issued.

float get_quality_value Get the metric value for a specified mesh entity.

str get_mesh_scheme Get the mesh scheme for the specified entity.

str get_mesh_scheme_firmness Get the mesh scheme firmness for the specified entity.

str get_mesh_interval_firmness Get the mesh interval firmness for the specified entity.

Bool is_meshed Determines whether a specified entity is meshed.

Bool is_merged Determines whether a specified entity is merged.

str get_smooth_scheme Get the smooth scheme for a specified entity.

int get_hex_count Get the count of hexes in the model.

int get_pyramid_count Get the count of pyramids in the model.

int get_tet_count Get the count of tets in the model.

int get_quad_count Get the count of quads in the model.

int get_tri_count Get the count of tris in the model.

int get_edge_count Get the count of edges in the model.

int get_node_count Get the count of nodes in the model.

int get_volume_element_count Get the count of elements in a volume.

Bool volume_contains_tets Determine whether a volume contains tets.

int get_surface_element_count Get the count of elements in a surface.

[int] get_hex_sheet Get the list of hex elements forming a hex sheet through the
given two node ids. The nodes must be adjacent in the
connectivity of the hex i.e. they form an edge of the hex.

Bool is_visible Query visibility for a specific entity.

Bool is_virtual Query virtualality for a specific entity.

Bool contains_virtual Query virtualality of an entity's children.

[int] get_source_surfaces Get a list of a volume's sweep source surfaces.

Cubit 13.2 User Documentation

892

[int] get_target_surfaces Get a list of a volume's sweep target surfaces.

int get_common_curve_id Given 2 surfaces, get the common curve id.

int get_common_vertex_id Given 2 curves, get the common vertex id.

str get_merge_setting Get the merge setting for a specified entity.

str get_curve_type Get the curve type for a specified curve.

str get_surface_type Get the surface type for a specified surface.

[float] get_surface_normal Get the surface normal for a specified surface.

[float] get_surface_centroid Get the surface centroid for a specified surface.

str get_surface_sense Get the surface sense for a specified surface.

[str] get_entity_modeler_engine Get the modeler engine type for a specified entity.

[float] get_bounding_box Get the bounding box for a specified entity.

[float] get_total_bounding_box Get the bounding box for a list of entities.

float get_total_volume Get the total volume for a list of volume ids.

str get_entity_name Get the name of a specified entity.

int get_entity_color_index Get the color of a specified entity.

Bool is_multi_volume Query whether a specified body is a multi volume body.

Bool is_sheet_body Query whether a specified volume is a sheet body.

Bool is_interval_count_odd Query whether a specified surface has an odd loop.

Bool is_periodic Query whether a specified surface or curve is periodic.

Bool is_surface_planer Query whether a specified surface is planer.

Bool get_undo_enabled

int number_undo_commands

[str] get_aprepro_vars Gets the current aprepro variable names.

str get_aprepro_value_as_string Gets the string value of an aprepro variable.

Bool get_node_constraint Query current setting for node constraint (move nodes to
geometry).

str get_vertex_type Get the Vertex Types for a specified vertex on a specified
surface. Vertex types include "side", "end", "reverse",
"unknown".

CubitInterface Class Reference

893

[int] get_relatives Get the relatives (parents/children) of a specified entity.

[int] get_adjacent_surfaces Get a list of adjacent surfaces to a specified entity.

[int] get_adjacent_volumes Get a list of adjacent volumes to a specified entity.

[int] get_entities Get all geometry entities of a specified type.

[int] get_list_of_free_ref_entities Get all free entities of a given geometry type.

int get_owning_body Get the owning body for a specified entity.

int get_owning_volume Get the owning volume for a specified entity.

int get_owning_volume_by_name Get the owning volume for a specified entity.

float get_curve_length Get the length of a specified curve.

float get_arc_length Get the arc length of a specified curve.

float get_distance_from_curve_start Get the distance from a point on a curve to the curve's start
point.

float get_curve_radius Get the radius of a specified arc.

[float] get_curve_center Get the center point of the arc.

float get_surface_area Get the area of a surface.

float get_volume_area Get the area of a volume.

float get_hydraulic_radius_surface_area Get the area of a hydraulic surface.

float get_hydraulic_radius_volume_area Get the area of a hydraulic volume.

[float] get_center_point Get the center point of a specified entity.

int get_valence Get the valence for a specific vertex.

float get_distance_between Get the distance between two vertices.

 print_surface_summary_stats Print the surface summary stats to the console.

 print_volume_summary_stats Print the volume summary stats to the console.

int get_volume_count Get the current number of volumes.

int get_surface_count Get the current number of surfaces.

int get_vertex_count Get the current number of vertices.

int get_curve_count Get the current number of curves.

Cubit 13.2 User Documentation

894

int get_curve_count Get the current number of curves in the passed-in volumes.

Bool is_catia_engine_available Determine whether catia engine is available.

[int] evaluate_exterior_angle find all curves in the given list with an exterior angle (the
angle between surfaces) less than the test angle. This is
equivalent to the df parser "exterior_angle" test. (draw curve
with exterior_angle >90)

[int] get_small_curves Get the list of small curves for a list of volumes.

[int] get_smallest_curves Get a list of the smallest curves in the list of volumes. The
number returned is specified by 'num_to_return'.

[int] get_small_surfaces Get the list of small surfaces for a list of volumes.

[int] get_narrow_surfaces Get the list of narrow surfaces for a list of volumes.

[int] get_small_and_narrow_surfaces Get the list of small or narrow surfaces from a list of
volumes.

[int] get_surfs_with_narrow_regions Get the list of surfaces with narrow regions.

[int] get_small_volumes Get the list of small volumes from a list of volumes.

[int] get_blend_surfaces Get the list of blend surfaces for a list of volumes.

[int] get_small_loops Get the list of close loops (surfaces) for a list of volumes.

[int] get_tangential_intersections Get the list of bad tangential intersections for a list of
volumes.

[int] get_coincident_vertices

[[str]] get_solutions_for_near_coincident_vertices Get lists of display strings and command strings for near
coincident vertices.

[[str]] get_solutions_for_imprint_merge Get lists of display strings and command strings for
imprint/merge solutions.

[[str]] get_solutions_for_small_surfaces Get lists of display, preview and command strings for small
surface solutions.

[[str]] get_solutions_for_small_curves Get lists of display, preview and command strings for small
curve solutions.

[[str]] get_solutions_for_surfaces_with_narrow_regions Get lists of display, preview and command strings for
surfaces with narrow regions solutions.

[int] get_overlapping_volumes Get the list of overlapping volumes for a list of volumes.

[[int]] get_mergeable_vertices Get the list of mergeable vertices from a list of
volumes/bodies.

[[str]] get_solutions_for_blends Get the solution list for a given blend surface.

CubitInterface Class Reference

895

[[int]] get_blend_chains Queries the blend chains for a surface.

float get_merge_tolerance Get the current merge tolerance value.

str get_exodus_entity_name Get the name associated with an exodus entity.

str get_exodus_entity_description Get the description associated with an exodus entity.

[float] get_all_exodus_times Open an exodus file and get a vector of all stored time
stamps.

int get_block_id Get the associated block id for a specific curve, surface, or
volume.

[int] get_block_ids Get list of block ids from a mesh geometry file.

[int] get_block_id_list Get a list of all blocks.

[int] get_nodeset_id_list Get a list of all nodesets.

[int] get_sideset_id_list Get a list of all sidesets.

[int] get_bc_id_list Get a list of all bcs of a specified type.

str get_bc_name Get the name for the specified bc.

[int] get_nodeset_id_list_for_bc Get a list of all nodesets the specified bc is applied to.

[int] get_sideset_id_list_for_bc Get a list of all sidesets the specified bc is applied to.

int get_next_sideset_id Get a next available sideset id.

int get_next_nodeset_id Get a next available nodeset id.

int get_next_block_id Get a next available block id.

[int] get_block_volumes Get a list of volume ids associated with a specific block.

[int] get_block_surfaces Get a list of surface associated with a specific block.

[int] get_block_curves Get a list of curve associated with a specific block.

[int] get_block_vertices Get a list of vertices associated with a specific block.

[int] get_block_nodes Get a list of nodes associated with a specific block.

[int] get_block_edges Get a list of edges associated with a specific block.

[int] get_block_tris Get a list of tris associated with a specific block.

[int] get_block_faces Get a list of faces associated with a specific block.

[int] get_block_pyramids Get a list of pyramids associated with a specific block.

Cubit 13.2 User Documentation

896

[int] get_block_tets Get a list of tets associated with a specific block.

[int] get_block_hexes Get a list of hexes associated with a specific block.

[int] get_volume_hexes get the list of any hex elements in a given volume

[int] get_volume_tets get the list of any tet elements in a given volume

[int] get_nodeset_volumes Get a list of volume ids associated with a specific nodeset.

[int] get_nodeset_surfaces Get a list of surface ids associated with a specific nodeset.

[int] get_nodeset_curves Get a list of curve ids associated with a specific nodeset.

[int] get_nodeset_vertices Get a list of vertex ids associated with a specific nodeset.

[int] get_nodeset_nodes Get a list of node ids associated with a specific nodeset.
This only returns the nodes that were specifically assigned
to this nodeset. If the nodeset was created as a piece of
geometry, get_nodeset_nodes will not return the nodes on
that geometry See also get_nodeset_nodes_inclusive.

[int] get_nodeset_nodes_inclusive Get a list of node ids associated with a specific nodeset.
This includes all nodes specifically assigned to the nodeset,
as well as nodes associated to a piece of geometry which
was used to define the nodeset.

[int] get_sideset_curves Get a list of curve ids associated with a specific sideset.

[int] get_curve_edges get the list of any edge elements on a given curve

[int] get_sideset_surfaces Get a list of any surfaces in a sideset.

[int] get_sideset_quads Get a list of any quads in a sideset.

[int] get_surface_quads get the list of any quad elements on a given surface

[int] get_surface_tris get the list of any tri elements on a given surface

str get_entity_sense Get the sense of a sideset item.

str get_wrt_entity Get the with-respect-to entity.

Bool is_using_shells Get the shell use for a sideset.

[str] get_geometric_owner Get a list of geometric owners given a list of mesh entities.

[int] get_volume_nodes Get list of node ids owned by a volume. Excludes nodes
owned by bounding surfs, curves and verts.

[int] get_surface_nodes Get list of node ids owned by a surface. Excludes nodes
owned by bounding curves and verts.

[int] get_curve_nodes Get list of node ids owned by a curve. Excludes nodes
owned by bounding vertices.

CubitInterface Class Reference

897

int get_vertex_node Get the node owned by a vertex.

int get_id_from_name Get id for a named entity.

[int] get_group_groups Get group groups (groups that are children of another
group).

[int] get_group_volumes Get group volumes (volumes that are children of a group).

[int] get_group_surfaces Get group surfaces (surfaces that are children of a group).

[int] get_group_curves Get group curves (curves that are children of a group).

[int] get_group_vertices Get group vertices (vertices that are children of a group).

[int] get_group_nodes Get group nodes (nodes that are children of a group).

[int] get_group_edges Get group edges (edges that are children of a group).

[int] get_group_quads Get group quads (quads that are children of a group).

[int] get_group_tris Get group tris (tris that are children of a group).

[int] get_group_tets Get group tets (tets that are children of a group).

[int] get_group_hexes Get group hexes (hexes that are children of a group).

int get_next_group_id Get the next available group id from Cubit.

 delete_all_groups Delete all groups.

 delete_group Delete a specific group.

 set_max_group_id Reset Cubit's max group id This is really dangerous to use
and exists only to overcome a limitation with Cubit. Cubit
keeps track of the next group id to assign. But those ids just
keep incrementing in Cubit. Some of the power tools in the
Cubit GUI make groups 'under the covers' for various
operations. The groups are immediately deleted. But,
creating those groups will cause Cubit's group id to increase
and downstream journal files may be messed up because
those journal files are expecting a certain ID to be available.

int create_new_group Create a new group.

 remove_entity_from_group Remove a specific entity from a specific group.

 add_entity_to_group Add a specific entity to a specific group.

[int] get_mesh_group_parent_ids Get the group ids which are parents to the indicated mesh
element.

Bool is_mesh_element_in_group Indicates whether a mesh element is in a group.

Bool is_part_of_list Routine to check for the presence of an id in a list of ids.

Cubit 13.2 User Documentation

898

int get_last_id Get the id of the last created entity of the given type.

str get_assembly_classification_level Get Classification Level for metadata.

str get_assembly_classification_category Get Classification Category for metadata.

str get_assembly_weapons_category Get Weapons Category for metadata.

str get_assembly_metadata Get metadata for a specified volume id.

Bool is_assembly_metadata_attached Determine whether metadata is attached to a specified
volume.

str get_assembly_name Get the stored name of an assembly node.

str get_assembly_path Get the stored path of an assembly node.

str get_assembly_description Get the stored description of an assembly node.

int get_assembly_instance Get the stored instance number of an assembly node.

str get_assembly_file_format Get the stored file format of an assembly node.

str get_assembly_units Get the stored units measure of an assembly node.

str get_assembly_material_description Get the stored material description of an assembly part.

str get_assembly_material_specification Get the stored material specification of an assembly part.

int get_exodus_id Get the exodus/genesis id for this element.

str get_geometry_owner Get the geometric owner of this mesh element.

[int] get_connectivity Get the list of node ids contained within a mesh entity.

[int] get_expanded_connectivity Get the list of node ids contained within a mesh entity,
including interior nodes.

[int] get_sub_elements Get the lower dimesion entities associated with a higher
dimension entities. For example get the faces associated
with a hex or the edges associated with a tri.

[float] get_nodal_coordinates Get the nodal coordinates for a given node id.

[int] get_hex_nodes

[int] get_tet_nodes

[int] get_face_nodes

[int] get_tri_nodes

Bool get_node_position_fixed Query "fixedness" state of node. A fixed node is not affecting
by smoothing.

CubitInterface Class Reference

899

str get_sideset_element_type Get the element type of a sideset.

str get_block_element_type Get the element type of a block.

int get_exodus_element_count Get the number of elements in a exodus entity.

int get_block_attribute_count Get the number of attributes in a block.

float get_block_attribute_value Get a specific block attribute value.

[str] get_valid_block_element_types Get a list of potential element types for a block.

int get_nodeset_node_count Get the number of nodes in a nodeset.

int get_geometry_node_count

str get_mesh_element_type Get the mesh element type contained in the specified
geometry.

Bool is_on_thin_shell Determine whether a BC is on a thin shell. Valid for
temperature, convection and heatflux.

Bool temperature_is_on_solid Determine whether a BC temperature is on a solid. Valid for
convection and temperature.

Bool convection_is_on_solid Determine whether a BC convection is on a solid. Valid for
convection.

Bool convection_is_on_shell_area Determine whether a BC convection is on a shell top or
bottom. Valid for convection.

float get_convection_coefficient Get the convection coefficient.

float get_bc_temperature Get the temperature. Valid for convection, temperature.

Bool temperature_is_on_shell_area Determine whether a BC temperature is on a shell area.
Valid for convection and temperature and on top, bottom,
gradient, and middle.

Bool heatflux_is_on_shell_area Determine whether a BC heatflux is on a shell area.

float get_heatflux_on_area Get the heatflux on a specified area.

int get_cfd_type Get the cfd subtype for a specified cfd BC.

float get_contact_pair_friction_value Get the contact pair's friction value.

float get_contact_pair_tolerance_value Get the contact pair's tolerance value.

Bool get_contact_pair_tied_state Get the contact pair's tied state.

Bool get_contact_pair_general_state Get the contact pair's general state.

Bool get_contact_pair_exterior_state Get the contact pair's exterior state.

Cubit 13.2 User Documentation

900

int get_displacement_coord_system Get the displacement's coordinate system id.

str get_displacement_combine_type Get the displacement's combine type which is "Overwrite",
"Average", "SmallestCombine", or "LargestCombine".

float get_pressure_value Get the pressure value.

str get_pressure_function Get the pressure function.

float get_force_magnitude Get the force magnitude from a force.

float get_moment_magnitude Get the moment magnitude from a force.

[float] get_force_direction_vector Get the direction vector from a force.

[float] get_force_moment_vector Get the moment vector from a force.

str get_constraint_type Get the type of a specified constraint.

str get_constraint_reference_point Get the reference point of a specified constraint.

str get_constraint_dependent_entity_point Get the dependent entity of a specified constraint.

float get_material_property

int get_media_property

[str] get_material_name_list

[str] get_media_name_list

 set_label_type

int get_label_type

Body body Gets the body object from an ID.

Volume volume Gets the volume object from an ID.

Surface surface Gets the surface object from an ID.

Curve curve Gets the curve object from an ID.

Vertex vertex Gets the vertex object from an ID.

 reset Executes a reset within cubit.

Body brick Creates a brick of specified width, depth, and height.

Body sphere Creates all or part of a sphere.

Body prism Creates a prism of the specified dimensions.

CubitInterface Class Reference

901

Body pyramid Creates a pyramid of the specified dimensions.

Body cylinder creates a cylinder of the specified dimensions

Body torus creates a torus of the specified dimensions

Vertex create_vertex Creates a vertex at a x,y,z.

Curve create_curve Creates a curve between two vertices.

Body create_surface Creates a surface from boundary curves.

[Body] sweep_curve Create a Body or a set of Bodies from a swept curve.

Body copy_body Creates a copy of the input Body.

[Body] tweak_surface_offset Performs a tweak surface offset command.

[Body] tweak_surface_remove Removes a surface from a body and extends the
surrounding surfaces if extend_ajoining is true.

[Body] tweak_curve_remove Removes a curve from a body and extends the surrounding
surface to fill the gap.

[Body] tweak_curve_offset Performs a tweak curve offset command.

[Body] tweak_vertex_fillet Performs a tweak vertex fillet command.

[Body] subtract Performs a boolean subtract operation.

[Body] unite Performs a boolean unite operation.

 move Moves the Entity the specified vector.

 scale Scales the Entity according to the specified factor.

 reflect Reflect the Entity about the specified axis.

[int] get_volumes_for_node

int get_mesh_error_count

Class Variables

const int CI_ERROR -

Member Function Documentation

init(argv)

Use init to initialize Cubit. Using a blank list as the input parameter is acceptable.

Cubit 13.2 User Documentation

902

Parameters

argv List of start-up directives. A blank list such as [''] will suffice. See Cubit Help for details

destroy()

Closes the current journal file.

set_cubit_interrupt(interrupt)

This sets the global flag in Cubit that stops all interruptable processes.

Parameters

interrupt Boolean set to TRUE if process is to be stopped

set_playback_paused_on_error(pause)

Sets whether or not playback is paused when an error occurs.

Parameters

pause True if playback should be paused when an error occurs.

Bool is_playback_paused_on_error()

Gets whether or not playback is paused when an error occurs.

Return

True if playback should be paused when an error occurs.

Bool developer_commands_are_enabled()

This checks to see whether developer commands are enabled.

Return

True if developer commands are enabled, otherwise False

str get_version()

Get the Cubit version.

Return

A string containing the current version of Cubit

CubitInterface Class Reference

903

str get_revision_date()

Get the Cubit revision date.

Return

A string containing Cubit's last date of revision

str get_build_number()

Get the Cubit build number.

Return

A string containing the current Cubit build number

str get_acis_version()

Get the Acis version number.

Return

A string containing the Acis version number

int get_acis_version_as_int()

Get the Acis version number as an int.

Return

An integer containing the Acis version number

str get_exodus_version()

Get the Exodus version number.

Return

A string containing the Exodus version number

str get_graphics_version()

Get the VTK version number.

Return

A string containing the VTK version number

Cubit 13.2 User Documentation

904

print_cmd_options()

Used to print the command line options.

Bool is_modified()

Get the modified status of the model.

Return

A boolean indicating whether the model has been modified

set_modified()

Set the status of the model (is_modified() is now false). If you modify the model after you set this flag, it will register true.

Bool is_undo_save_needed()

Get the status of the model relative to undo checkpointing.

Return

A boolean indicating whether the model has been modified

set_undo_saved()

Set the status of the model relative to undo checkpointin.

Bool is_command_echoed()

Check the echo flag in cubit.

Return

A boolean indicating whether commands should be echoed in Cubit

Bool is_volume_meshable(volume_id)

Check if volume is meshable with current scheme.

Parameters

volume_id

Return

A boolean indicating whether volume is meshable with current scheme

CubitInterface Class Reference

905

journal_commands(state)

Set the journaling flag in cubit.

Parameters

state A boolean that turns journaling on (1) and off (0)

Bool is_command_journaled()

Check the journaling flag in cubit.

Return

A boolean indicating whether commands are journaled by Cubit

str get_current_journal_file()

Gets the current journal file name.

Return

The current journal file name.

cmd(input_string)

Pass a command string into Cubit.

Example

 cubit.cmd("brick x 10")

Parameters

input_string Pointer to a string containing a complete Cubit command

silent_cmd(input_string)

Pass a command string into Cubit and have it executed without being verbose at the command prompt.

Example

 cubit.silent_cmd("display")

Cubit 13.2 User Documentation

906

Parameters

input_string Pointer to a string containing a complete Cubit command

[int] parse_cubit_list(type, int_list, include_sheet_bodies)

Parse a Cubit style list of IDs (1,2,4 to 19 by 3 or all) into a list of integers.

Parameters

type The specific entity type represented by the list of IDs

int_list The string that contains the user's ID list

include_sheet_bodies - include sheet bodies in the integer list (1 if yes, 0 if no)

Return

A vector of validated integers

print_raw_help(input_line, order_dependent, consecutive_dependent)

Used to print out help when a ?, & or ! is pressed.

Parameters

input_line The current command line being typed by the user

order_dependent Is set to '1' if the key pressed is not &, otherwise '0'

consecutive_dependent Is set to '1' if the pressed is '?', otherwise '0'

int get_error_count()

Get the number of errors in the current Cubit session.

Return

The number of errors in the Cubit session.

[str] get_mesh_error_solutions(error_code)

Get the paired list of mesh error solutions and help context cues.

Parameters

error_code The error code associated with the error solution

CubitInterface Class Reference

907

Return

List of 'married' strings. First string is solution text. Second string is help context cue. Third string is command_panel cue.

float get_view_distance()

Get the distance from the camera to the model (from - at).

Return

Distance from the camera to the model

[float] get_view_at()

Get the camera 'at' point.

Return

The xyz coordinates of the camera's current position

[float] get_view_from()

Get the camera 'from' point.

Return

The xyz coordinates of the camera's from position

reset_camera()

reset the camera in all open windows this includes resetting the view, closing the histogram and color windows and
clearing the scalar bar, highlight, and picked entities.

unselect_entity(entity_type, entity_id)

Unselect an entity that is currently selected.

Example

 cubit.unselect_entity("curve", 221)

Parameters

entity_type The type of the entity to be unselected

Cubit 13.2 User Documentation

908

entity_id The ID of the entity to be unselected

Bool is_perspective_on()

Get the current perspective mode.

Return

True if perspective is on, otherwise false

Bool is_occlusion_on()

Get the current occlusion mode.

Return

True if occlusion is on, otherwise false

Bool is_scale_visibility_on()

Get the current scale visibility setting.

Return

True if scale is visible, otherwise false

Bool is_select_partial_on()

Get the current select partial setting.

Return

True if partial select is on, otherwise false

int get_rendering_mode()

Get the current rendering mode.

Return

The current rendering mode of the graphics subsystem

set_rendering_mode(mode)

Set the current rendering mode.

Parameters

mode Integer associated with the rendering mode. Options are 1,7,2,8, or 5

CubitInterface Class Reference

909

clear_preview()

Clear preview graphics without affecting other display settings.

str get_pick_type()

Get the current pick type.

Return

The current pick type of the graphics system

float get_mesh_edge_length(edge_id)

Get the length of a mesh edge.

Parameters

edge_id Specifies the id of the edge

Return

The length of the mesh edge

float get_meshed_volume_or_area(geom_type, entity_ids)

Get the total volume/area of a entity's mesh.

Example

 area = cubit.get_meshed_volume_or_area("volume", 1)

Parameters

geom_type Specifies the type of entity - volume, surface, hex, tet, tri, quad

entity_ids A list of ids for the entity type

Return

The entity's meshed volume or area

int get_mesh_intervals(geom_type, entity_id)

Get the interval count for a specified entity.

Cubit 13.2 User Documentation

910

Example

 intervals = cubit.get_meshed_intervals("surface", 12)

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

The entity's interval count

float get_mesh_size(geom_type, entity_id)

Get the mesh size for a specified entity.

Example

 mesh_size = cubit.get_meshed_size("volume", 2)

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

The entity's mesh size

float get_auto_size(volume_id_list, size)

Get the auto size for a given set of volumes. Note, this does not actually set the interval size on the volumes. It simply
returns the size that would be set if an 'size auto factor n' command were issued.

Example

 double get_auto_size(volume_list)

CubitInterface Class Reference

911

Parameters

volume_id_list

size The auto factor for the AutoSizeTool

Return

The interval size from the AutoSizeTool

float get_quality_value(mesh_type, mesh_id, metric_name)

Get the metric value for a specified mesh entity.

Parameters

mesh_type Specifies the mesh entity type (hex, tet, tri, quad)

mesh_id Specifies the id of the mesh entity

metric_name Specifies the name of the metric (skew, taper, jacobian, etc)

Return

The value of the quality metric

str get_mesh_scheme(geom_type, entity_id)

Get the mesh scheme for the specified entity.

Example

 scheme = cubit.get_mesh_scheme("surface", 12)

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

The entity's meshing scheme

Cubit 13.2 User Documentation

912

str get_mesh_scheme_firmness(geom_type, entity_id)

Get the mesh scheme firmness for the specified entity.

Example

 firmness = cubit.get_mesh_firmness("surface", 12)

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

The entity's meshing firmness (HARD, LIMP, SOFT, etc)

str get_mesh_interval_firmness(geom_type, entity_id)

Get the mesh interval firmness for the specified entity.

Example

 firmness = cubit.get_mesh_interval_firmness("surface", 12)

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

The entity's meshing firmness (HARD, LIMP, SOFT, etc)

Bool is_meshed(geom_type, entity_id)

Determines whether a specified entity is meshed.

Example

CubitInterface Class Reference

913

 if cubit.is_meshed("surface", 137):

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Bool is_merged(geom_type, entity_id)

Determines whether a specified entity is merged.

Example

 if cubit.is_merged("surface", 137):

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

str get_smooth_scheme(geom_type, entity_id)

Get the smooth scheme for a specified entity.

Example

 smooth_scheme = cubit.get_smooth_scheme("curve", 122)

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

The smooth scheme associated with the entity

Cubit 13.2 User Documentation

914

int get_hex_count()

Get the count of hexes in the model.

Return

The number of hexes in the model

int get_pyramid_count()

Get the count of pyramids in the model.

Return

The number of pyramids in the model

int get_tet_count()

Get the count of tets in the model.

Return

The number of tets in the model

int get_quad_count()

Get the count of quads in the model.

Return

The number of quads in the model

int get_tri_count()

Get the count of tris in the model.

Return

The number of tris in the model

int get_edge_count()

Get the count of edges in the model.

Return

The number of edges in the model

CubitInterface Class Reference

915

int get_node_count()

Get the count of nodes in the model.

Return

The number of nodes in the model

int get_volume_element_count(volume_id)

Get the count of elements in a volume.

Parameters

volume_id

Return

The number of elements (both hex and tet) in a volume

Bool volume_contains_tets(volume_id)

Determine whether a volume contains tets.

Parameters

volume_id

Return

bool

int get_surface_element_count(surface_id)

Get the count of elements in a surface.

Parameters

surface_id

Return

The number of elements (both quads and tris) in a surface

[int] get_hex_sheet(node_id_1, node_id_2)

Get the list of hex elements forming a hex sheet through the given two node ids. The nodes must be adjacent in the
connectivity of the hex i.e. they form an edge of the hex.

Parameters

node_id_1

Cubit 13.2 User Documentation

916

node_id_2

Return

A list of hex ids in the hex sheet

Bool is_visible(geom_type, entity_id)

Query visibility for a specific entity.

Example

 if cubit.is_visible("volume", 4)):

ERROR: EOF in multi-line statement

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Bool is_virtual(geom_type, entity_id)

Query virtualality for a specific entity.

Example

 if cubit.is_virtual("surface", 134)):

ERROR: EOF in multi-line statement

Parameters

geom_type Specifies the geometry type of the entity

CubitInterface Class Reference

917

entity_id Specifies the id of the entity

Bool contains_virtual(geom_type, entity_id)

Query virtualality of an entity's children.

Example

 if cubit.contains_virtual("surface", 134)):

ERROR: EOF in multi-line statement

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

[int] get_source_surfaces(volume_id)

Get a list of a volume's sweep source surfaces.

Parameters

volume_id Specifies the volume id

Return

List of surface ids

[int] get_target_surfaces(volume_id)

Get a list of a volume's sweep target surfaces.

Parameters

volume_id Specifies the volume id

Return

List of surface ids

Cubit 13.2 User Documentation

918

int get_common_curve_id(surface_1_id, surface_2_id)

Given 2 surfaces, get the common curve id.

Parameters

surface_1_id The id of one of the surfaces

surface_2_id The id of the other surface

Return

The id of the curve common to the two surfaces

int get_common_vertex_id(curve_1_id, curve_2_id)

Given 2 curves, get the common vertex id.

Parameters

curve_1_id The id of one of the curves

curve_2_id The id of the other curves

Return

The id of the vertex common to the two curves, 0 if there is none

str get_merge_setting(geom_type, entity_id)

Get the merge setting for a specified entity.

Example

 merge_setting = cubit.get_merge_setting("surface", 33)

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

A text string that indicates the merge setting for the entity

CubitInterface Class Reference

919

str get_curve_type(curve_id)

Get the curve type for a specified curve.

Parameters

curve_id ID of the curve

Return

Type of curve

str get_surface_type(surface_id)

Get the surface type for a specified surface.

Parameters

surface_id ID of the surface

Return

Type of surface

[float] get_surface_normal(surface_id)

Get the surface normal for a specified surface.

Parameters

surface_id ID of the surface

Return

surface normal at the center

[float] get_surface_centroid(surface_id)

Get the surface centroid for a specified surface.

Parameters

surface_id ID of the surface

Return

surface centroid

str get_surface_sense(surface_id)

Get the surface sense for a specified surface.

Cubit 13.2 User Documentation

920

Parameters

surface_id ID of the surface

Return

surface sense as "Reversed" or "Forward" or "Both"

[str] get_entity_modeler_engine(geom_type, entity_id)

Get the modeler engine type for a specified entity.

Example

 engine_list = cubit.get_entity_modeler_engine("surface",

47)

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

A vector of modeler engines associated with this entity

[float] get_bounding_box(geom_type, entity_id)

Get the bounding box for a specified entity.

Example

 vector_list = cubit.get_bounding_box("surface", 22)

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

CubitInterface Class Reference

921

Return

A vector of coordinates describing the entity's bounding box. Ten (10) values will be returned in axis-min, axis-max, and
axis-range order, repeated for x-axis, y-axis, and z-axis and ending with the total diagonal measure.

[float] get_total_bounding_box(geom_type, entity_list)

Get the bounding box for a list of entities.

Example

 vector_list = cubit.get_total_bounding_box("surface",

entity_list)

Parameters

geom_type Specifies the geometry type of the entity

entity_list List of ids associated with geom_type

Return

A vector of coordinates for the entity's bounding box. Twelve (12) values will be returned in xyz set order repeated four (4)
times per set.

float get_total_volume(volume_list)

Get the total volume for a list of volume ids.

Parameters

volume_list List of volume ids

Return

The total volume of all volumes indicated in the id list

str get_entity_name(geom_type, entity_id)

Get the name of a specified entity.

Example

 name = cubit.get_entity_name("vertex", 22)

Cubit 13.2 User Documentation

922

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

The name of the entity

int get_entity_color_index(entity_type, entity_id)

Get the color of a specified entity.

Example

 color_index = cubit.get_entity_color_index("curve", 33)

Parameters

entity_type Specifies the type of the entity

entity_id Specifies the id of the entity

Return

The color of the entity

Bool is_multi_volume(body_id)

Query whether a specified body is a multi volume body.

Parameters

body_id Id of the body

Return

True if body contains multiple volumes, otherwise false.

Bool is_sheet_body(volume_id)

Query whether a specified volume is a sheet body.

CubitInterface Class Reference

923

Parameters

volume_id Id of the volume

Return

True if volume is a sheet body, otherwise false

Bool is_interval_count_odd(surface_id)

Query whether a specified surface has an odd loop.

Parameters

surface_id Id of the surface

Return

True if surface is/contains an odd looop, otherwise false.

Bool is_periodic(geom_type, entity_id)

Query whether a specified surface or curve is periodic.

Example

 if cubit.is_periodic("surface", 22):

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

True is entity is periodic, otherwise false

Bool is_surface_planer(surface_id)

Query whether a specified surface is planer.

Example

 if cubit.is_surface_planer(22):

Cubit 13.2 User Documentation

924

Parameters

surface_id Specifies the id of the surface

Return

True is surface is planer, otherwise false

Bool get_undo_enabled()

int number_undo_commands()

[str] get_aprepro_vars()

Gets the current aprepro variable names.

str get_aprepro_value_as_string(var_name)

Gets the string value of an aprepro variable.

Parameters

var_name

Bool get_node_constraint()

Query current setting for node constraint (move nodes to geometry).

Return

True if constrained, otherwise false

str get_vertex_type(surface_id, vertex_id)

Get the Vertex Types for a specified vertex on a specified surface. Vertex types include "side", "end", "reverse",
"unknown".

Parameters

surface_id Id of the surface associated with the vertex

vertex_id Id of the vertex

CubitInterface Class Reference

925

Return

The type -- "side", "end", "reverse", or "unknown"

[int] get_relatives(source_geom_type, source_id, target_geom_type)

Get the relatives (parents/children) of a specified entity.

Example

 curve_list = cubit.get_relatives("surface", 12, "curve")

Parameters

source_geom_type The entity type of the source entity

source_id The id of the source entity

target_geom_type The target geometry type

Return

A list of ids of the target geometry type

[int] get_adjacent_surfaces(geom_type, entity_id)

Get a list of adjacent surfaces to a specified entity.

Example

 surface_id_list = cubit.get_adjacent_surfaces("curve", 22)

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

A list of surfaces ids

Cubit 13.2 User Documentation

926

[int] get_adjacent_volumes(geom_type, entity_id)

Get a list of adjacent volumes to a specified entity.

Example

 volume_id_list = cubit.get_adjacent_volumes("curve", 22)

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

A list of volume ids

[int] get_entities(geom_type, include_sheet_bodies)

Get all geometry entities of a specified type.

Example

 entity_id_list = cubit.get_entities("volume")

Parameters

geom_type Specifies the geometry type of the entity

include_sheet_bodies If true, then those routines requesting volumes or bodies will have sheet bodies returned.
Normally, when requesting volume lists, sheet bodies are specifically excluded. Some parts of the
Cubit interface need to see sheet bodies when requesting volumes, hence, the parameter.

Return

A list of ids of the specified geometry type

[int] get_list_of_free_ref_entities(geom_type)

Get all free entities of a given geometry type.

CubitInterface Class Reference

927

Example

 free_curve_id_list =

cubit.get_list_of_free_ref_entities("curve")

Parameters

geom_type Specifies the geometry type of the free entity

Return

A list of ids of the specified geometry type

int get_owning_body(geom_type, entity_id)

Get the owning body for a specified entity.

Example

 body_id = cubit.get_owning_body("curve", 12)

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

ID of the specified entity's owning body

int get_owning_volume(geom_type, entity_id)

Get the owning volume for a specified entity.

Example

 volume_id = cubit.get_owning_volume("curve", 12)

Cubit 13.2 User Documentation

928

Parameters

geom_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

ID of the specified entity's owning volume

int get_owning_volume_by_name(entity_name)

Get the owning volume for a specified entity.

Example

 volume_id = cubit.get_owning_volume_by_name("TipSurface")

Parameters

entity_name Specifies the name (supplied by Cubit) of the entity

Return

ID of the specified entity's owning volume or 0 if name is unknown

float get_curve_length(curve_id)

Get the length of a specified curve.

Parameters

curve_id ID of the curve

Return

Length of the curve

float get_arc_length(curve_id)

Get the arc length of a specified curve.

Parameters

curve_id ID of the curve

CubitInterface Class Reference

929

Return

Arc length of the curve

float get_distance_from_curve_start(x, y, z, curve_id)

Get the distance from a point on a curve to the curve's start point.

Parameters

x value of the point to measure

y value of the point to measure

z value of the point to measure

curve_id ID of the curve

Return

Distance from the xyz to the curve start

float get_curve_radius(curve_id)

Get the radius of a specified arc.

Parameters

curve_id ID of the curve

Return

Radius of the curve

[float] get_curve_center(curve_id)

Get the center point of the arc.

Parameters

curve_id ID of the curve

Return

x, y, z center point of the curve in a vector

float get_surface_area(surface_id)

Get the area of a surface.

Cubit 13.2 User Documentation

930

Parameters

surface_id ID of the surface

Return

Area of the surface

float get_volume_area(volume_id)

Get the area of a volume.

Parameters

volume_id ID of the volume

Return

Area of the volume

float get_hydraulic_radius_surface_area(surface_id)

Get the area of a hydraulic surface.

Parameters

surface_id ID of the surface

Return

Hydraulic area of the surface

float get_hydraulic_radius_volume_area(volume_id)

Get the area of a hydraulic volume.

Parameters

volume_id ID of the volume

Return

Hydraulic area of the volume

[float] get_center_point(entity_type, entity_id)

Get the center point of a specified entity.

Example

 center_point = cubit.get_center_point("surface", 22)

CubitInterface Class Reference

931

Parameters

entity_type Specifies the geometry type of the entity

entity_id Specifies the id of the entity

Return

Vector of doubles representing x y z

int get_valence(vertex_id)

Get the valence for a specific vertex.

Parameters

vertex_id ID of vertex

float get_distance_between(vertex_id_1, vertex_id_2)

Get the distance between two vertices.

Parameters

vertex_id_1 ID of vertex 1 vertex_id_2 ID of vertex 2 /return distance

vertex_id_2

print_surface_summary_stats()

Print the surface summary stats to the console.

print_volume_summary_stats()

Print the volume summary stats to the console.

int get_volume_count()

Get the current number of volumes.

Return

The number of volumes in the current model, if any

Cubit 13.2 User Documentation

932

int get_surface_count()

Get the current number of surfaces.

Return

The number of surfaces in the current model, if any

int get_vertex_count()

Get the current number of vertices.

Return

The number of vertices in the current model, if any

int get_curve_count()

Get the current number of curves.

Return

The number of curves in the current model, if any

int get_curve_count(target_volume_ids)

Get the current number of curves in the passed-in volumes.

Parameters

target_volume_ids

Return

The number of curves in the volumes

Bool is_catia_engine_available()

Determine whether catia engine is available.

Return

True if catia engine is available, otherwise false

[int] evaluate_exterior_angle(curve_list, test_angle)

find all curves in the given list with an exterior angle (the angle between surfaces) less than the test angle. This is
equivalent to the df parser "exterior_angle" test. (draw curve with exterior_angle >90)

CubitInterface Class Reference

933

Parameters

curve_list a list of curve ids (integers)

test_angle the value (in degrees) that will be used in testing the exterior angle

Return

a list of curve ids that meet the angle test.

[int] get_small_curves(target_volume_ids, mesh_size)

Get the list of small curves for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine. in Cubit is valid as input here.

mesh_size Indicate the mesh size used as the threshold

Return

List of small curve ids

[int] get_smallest_curves(target_volume_ids, num_to_return)

Get a list of the smallest curves in the list of volumes. The number returned is specified by 'num_to_return'.

Parameters

target_volume_ids List of volume ids to examine. in Cubit is valid as input here.

num_to_return Indicate the number of curves to return

Return

List of smallest curve ids

[int] get_small_surfaces(target_volume_ids, mesh_size)

Get the list of small surfaces for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine.

mesh_size Indicate the mesh size used as the threshold

Return

List of small surface ids

Cubit 13.2 User Documentation

934

[int] get_narrow_surfaces(target_volume_ids, mesh_size)

Get the list of narrow surfaces for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine.

mesh_size Indicate the mesh size used as the threshold

Return

List of small surface ids

[int] get_small_and_narrow_surfaces(target_ids, small_area,
small_curve_size)

Get the list of small or narrow surfaces from a list of volumes.

Parameters

target_ids

small_area Indicate the area threshold

small_curve_size Indicate size for 'narrowness'

Return

List of small or narrow surface ids

[int] get_surfs_with_narrow_regions(target_ids, narrow_size)

Get the list of surfaces with narrow regions.

Parameters

target_ids

narrow_size Indicate the size that defines 'narrowness'

Return

List of surface ids

[int] get_small_volumes(target_volume_ids, mesh_size)

Get the list of small volumes from a list of volumes.

Parameters

target_volume_ids List of volume ids to examine.

CubitInterface Class Reference

935

mesh_size Indicate the mesh size used as the threshold

Return

List of small volume ids

[int] get_blend_surfaces(target_volume_ids)

Get the list of blend surfaces for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine. List of blend surface ids

[int] get_small_loops(target_volume_ids, mesh_size)

Get the list of close loops (surfaces) for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine.

mesh_size Indicate the mesh size used as the threshold

Return

List of close loop (surface) ids

[int] get_tangential_intersections(target_volume_ids, upper_bound,
lower_bound)

Get the list of bad tangential intersections for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine.

upper_bound Upper threshold angle

lower_bound Lower threshold angle

Return

List of surface ids associated with bad tangential angles

[int] get_coincident_vertices(target_volume_ids, high_tolerance)

Parameters

target_volume_ids

Cubit 13.2 User Documentation

936

high_tolerance

Return

Paired list of vertex ids considered coincident

[[str]] get_solutions_for_near_coincident_vertices(vertex_id1,
vertex_id2)

Get lists of display strings and command strings for near coincident vertices.

Parameters

vertex_id1

vertex_id2

Return

Vector of three string vectors. Vector 1 will contain display strings to be shown to users. Vector 2 will contain Cubit
command strings. This second set of strings may contain concatenated strings delimited by '&&&'. In other words, one
instance of command string may in fact contain multiple commands separated by the '&&&' sequence. Vector 3 will
contain Cubit preview strings.

[[str]] get_solutions_for_imprint_merge(surface_id1, surface_id2)

Get lists of display strings and command strings for imprint/merge solutions.

Parameters

surface_id1 overlapping surface 1 surface_id2 overlapping surface 2

surface_id2

Return

Vector of three string vectors. Vector 1 will contain display strings to be shown to users. Vector 2 will contain Cubit
command strings. This second set of strings may contain concatenated strings delimited by '&&&'. In other words, one
instance of command string may in fact contain multiple commands separated by the '&&&' sequence. Vector 3 will
contain Cubit preview strings.

[[str]] get_solutions_for_small_surfaces(surface_id, small_curve_size,
mesh_size)

Get lists of display, preview and command strings for small surface solutions.

Parameters

surface_id Small surface

small_curve_size Threshold value used to determine what 'small' is

mesh_size Element size of the model

CubitInterface Class Reference

937

Return

Vector of three string vectors. Vector 1 will contain display strings to be shown to users. Vector 2 will contain Cubit
command strings. Vector 3 will contain Cubit preview strings.

[[str]] get_solutions_for_small_curves(curve_id, small_curve_size,
mesh_size)

Get lists of display, preview and command strings for small curve solutions.

Parameters

curve_id Small curve

small_curve_size Threshold value used to determine what 'small' is

mesh_size Element size of the model

Return

Vector of three string vectors. Vector 1 will contain display strings to be shown to users. Vector 2 will contain Cubit
command strings. Vector 3 will contain Cubit preview strings.

[[str]] get_solutions_for_surfaces_with_narrow_regions(surface_id,
small_curve_size, mesh_size)

Get lists of display, preview and command strings for surfaces with narrow regions solutions.

Parameters

surface_id Small surface

small_curve_size Threshold value used to determine what 'small' is

mesh_size Element size of the model

Return

Vector of three string vectors. Vector 1 will contain display strings to be shown to users. Vector 2 will contain Cubit
command strings. Vector 3 will contain Cubit preview strings.

[int] get_overlapping_volumes(target_volume_ids)

Get the list of overlapping volumes for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine.

Return

volume_list List of overlapping volumes ids

Cubit 13.2 User Documentation

938

[[int]] get_mergeable_vertices(target_volume_ids)

Get the list of mergeable vertices from a list of volumes/bodies.

Parameters

target_volume_ids List of volume ids to examine.

Return

list of lists of mergeable vertices (potentially more than a pair)

[[str]] get_solutions_for_blends(surface_id)

Get the solution list for a given blend surface.

Parameters

surface_id the surface being queried

Return

Vector of three string vectors. Vector 1 will contain display strings to be shown to users. Vector 2 will contain Cubit
command strings. Vector 3 will contain Cubit preview strings.

[[int]] get_blend_chains(surface_id)

Queries the blend chains for a surface.

Parameters

surface_id surface to retrieve the blend chains from

Return

A set of lists of id's in each blend chain

float get_merge_tolerance()

Get the current merge tolerance value.

Return

The value of the current merge tolerance

str get_exodus_entity_name(entity_type, entity_id)

Get the name associated with an exodus entity.

Example

CubitInterface Class Reference

939

 entity_name = cubit.get_exodus_entity_name("sideset", 33)

Parameters

entity_type "block", "sideset", nodeset"

entity_id Id of the entity in question

Return

Name of the entity or "" if none

str get_exodus_entity_description(entity_type, entity_id)

Get the description associated with an exodus entity.

Example

 entity_description =

cubit.get_exodus_entity_description("sideset", 33)

Parameters

entity_type "block", "sideset", nodeset"

entity_id Id of the entity in question

Return

Description of the entity or "" if none

[float] get_all_exodus_times(filename)

Open an exodus file and get a vector of all stored time stamps.

Parameters

filename Fully qualified exodus file name

Return

List of time stamps in the exodus file

Cubit 13.2 User Documentation

940

int get_block_id(entity_type, entity_id)

Get the associated block id for a specific curve, surface, or volume.

Example

 block_id = cubit.get_block_id("surface", 33)

Parameters

entity_type Type of entity

entity_id Id of entity in question

Return

Block id associated with this entity or zero (0) if none

[int] get_block_ids(mesh_geom_file_name)

Get list of block ids from a mesh geometry file.

Parameters

mesh_geom_file_name Fully qualified name of a mesh geometry file

Return

List of block ids in the mesh geometry file

[int] get_block_id_list()

Get a list of all blocks.

Return

List of all active block ids

[int] get_nodeset_id_list()

Get a list of all nodesets.

Return

List of all active nodeset ids

CubitInterface Class Reference

941

[int] get_sideset_id_list()

Get a list of all sidesets.

Return

List of all active sideset ids

[int] get_bc_id_list(bc_type_in)

Get a list of all bcs of a specified type.

Parameters

bc_type_in as an enum defined by CI_BCTypes. 1-9 is FEA, 10-30 is CFD

Return

List of all active bc ids

str get_bc_name(bc_type_in, bc_id)

Get the name for the specified bc.

Parameters

bc_type_in type of bc, as defined by enum CI_BCTypes. 1-9 is FEA, 10-30 is CFD

bc_id ID of the desired bc.

Return

The bc name

[int] get_nodeset_id_list_for_bc(bc_type_in, bc_id)

Get a list of all nodesets the specified bc is applied to.

Parameters

bc_type_in Type of bc to query, as defined by enum CI_BCTypes. 1-9 is FEA, 10-30 is CFD

bc_id ID of the bc to query

Return

A list of nodeset ID's associated with that bc

[int] get_sideset_id_list_for_bc(bc_type_in, bc_id)

Get a list of all sidesets the specified bc is applied to.

Cubit 13.2 User Documentation

942

Parameters

bc_type_in Type of bc to query, as defined by enum CI_BCTypes. 1-9 is FEA, 10-30 is CFD

bc_id ID of the bc to query

Return

A list of sideset ID's associated with that bc

int get_next_sideset_id()

Get a next available sideset id.

Return

Next available sideset id

int get_next_nodeset_id()

Get a next available nodeset id.

Return

Next available nodeset id

int get_next_block_id()

Get a next available block id.

Return

Next available block id

[int] get_block_volumes(block_id)

Get a list of volume ids associated with a specific block.

Parameters

block_id User specified id of the desired block

Return

A list of volume ids contained in the block

[int] get_block_surfaces(block_id)

Get a list of surface associated with a specific block.

CubitInterface Class Reference

943

Parameters

block_id User specified id of the desired block

Return

A list of surface ids contained in the block

[int] get_block_curves(block_id)

Get a list of curve associated with a specific block.

Parameters

block_id User specified id of the desired block

Return

A list of curve ids contained in the block

[int] get_block_vertices(block_id)

Get a list of vertices associated with a specific block.

Parameters

block_id User specified id of the desired block

Return

A list of vertex ids contained in the block

[int] get_block_nodes(block_id)

Get a list of nodes associated with a specific block.

Parameters

block_id User specified id of the desired block

Return

A list of node ids contained in the block

[int] get_block_edges(block_id)

Get a list of edges associated with a specific block.

Parameters

block_id User specified id of the desired block

Cubit 13.2 User Documentation

944

Return

A list of edge ids contained in the block

[int] get_block_tris(block_id)

Get a list of tris associated with a specific block.

Parameters

block_id User specified id of the desired block

Return

A list of tri ids contained in the block

[int] get_block_faces(block_id)

Get a list of faces associated with a specific block.

Parameters

block_id User specified id of the desired block

Return

A list of face ids contained in the block

[int] get_block_pyramids(block_id)

Get a list of pyramids associated with a specific block.

Parameters

block_id User specified id of the desired block

Return

A list of pyramid ids contained in the block

[int] get_block_tets(block_id)

Get a list of tets associated with a specific block.

Parameters

block_id User specified id of the desired block

Return

A list of tet ids contained in the block

CubitInterface Class Reference

945

[int] get_block_hexes(block_id)

Get a list of hexes associated with a specific block.

Parameters

block_id User specified id of the desired block

Return

A list of hex ids contained in the block

[int] get_volume_hexes(volume_id)

get the list of any hex elements in a given volume

Parameters

volume_id User specified id of the desired volume

Return

A list of the hex ids in the volume

[int] get_volume_tets(volume_id)

get the list of any tet elements in a given volume

Parameters

volume_id User specified id of the desired volume

Return

A list of the tet ids in the volume

[int] get_nodeset_volumes(nodeset_id)

Get a list of volume ids associated with a specific nodeset.

Parameters

nodeset_id User specified id of the desired nodeset

Return

A list of volume ids contained in the nodeset

[int] get_nodeset_surfaces(nodeset_id)

Get a list of surface ids associated with a specific nodeset.

Cubit 13.2 User Documentation

946

Parameters

nodeset_id User specified id of the desired nodeset

Return

A list of surface ids contained in the nodeset

[int] get_nodeset_curves(nodeset_id)

Get a list of curve ids associated with a specific nodeset.

Parameters

nodeset_id User specified id of the desired nodeset

Return

A list of curve ids contained in the nodeset

[int] get_nodeset_vertices(nodeset_id)

Get a list of vertex ids associated with a specific nodeset.

Parameters

nodeset_id User specified id of the desired nodeset

Return

A list of vertex ids contained in the nodeset

[int] get_nodeset_nodes(nodeset_id)

Get a list of node ids associated with a specific nodeset. This only returns the nodes that were specifically assigned to this
nodeset. If the nodeset was created as a piece of geometry, get_nodeset_nodes will not return the nodes on that
geometry See also get_nodeset_nodes_inclusive.

Parameters

nodeset_id User specified id of the desired nodeset

Return

A list of node ids contained in the nodeset

[int] get_nodeset_nodes_inclusive(nodeset_id)

Get a list of node ids associated with a specific nodeset. This includes all nodes specifically assigned to the nodeset, as
well as nodes associated to a piece of geometry which was used to define the nodeset.

CubitInterface Class Reference

947

Parameters

nodeset_id User specified id of the desired nodeset

Return

A list of node ids contained in the nodeset

[int] get_sideset_curves(sideset_id)

Get a list of curve ids associated with a specific sideset.

Parameters

sideset_id User specified id of the desired sideset

Return

A list of curve ids contained in the sideset

[int] get_curve_edges(curve_id)

get the list of any edge elements on a given curve

Parameters

curve_id User specified id of the desired curve

Return

A list of the edge element ids on the curve

[int] get_sideset_surfaces(sideset_id)

Get a list of any surfaces in a sideset.

Parameters

sideset_id User specified id of the desired sideset

Return

A list of the surfaces defining the sideset

[int] get_sideset_quads(sideset_id)

Get a list of any quads in a sideset.

Parameters

sideset_id User specified id of the desired sideset

Cubit 13.2 User Documentation

948

Return

A list of the quads in the sideset

[int] get_surface_quads(surface_id)

get the list of any quad elements on a given surface

Parameters

surface_id User specified id of the desired surface

Return

A list of the quad ids on the surface

[int] get_surface_tris(surface_id)

get the list of any tri elements on a given surface

Parameters

surface_id User specified id of the desired surface

Return

A list of the tri ids on the surface

str get_entity_sense(source_type, source_id, sideset_id)

Get the sense of a sideset item.

Example

 sense = cubit.get_entity_sense("face", 332, 2)

Parameters

source_type Item type - could be 'face', 'quad' or 'tri'

source_id ID of entity

sideset_id ID of the sideset

Return

Sense of the source_type/source_id in specified sideset

CubitInterface Class Reference

949

str get_wrt_entity(source_type, source_id, sideset_id)

Get the with-respect-to entity.

Example

 wrt_entity = cubit.get_wrt_entity("face", 332, 2)

Parameters

source_type Item type - could be 'face', 'quad' or 'tri'

source_id ID of entity

sideset_id ID of the sideset

Return

'with-respect-to' entity of the source_type/source_id in specified sideset

Bool is_using_shells(sideset_id)

Get the shell use for a sideset.

Parameters

sideset_id ID of the sideset

Return

True if the sideset uses shells, otherwise false

[str] get_geometric_owner(mesh_entity_type, mesh_entity_list)

Get a list of geometric owners given a list of mesh entities.

Example

 owner_list = cubit.get_geometric_owner("quad", id_list)

Parameters

mesh_entity_type The type of mesh entity. Only works for 'quad, 'face', or 'tri'

Cubit 13.2 User Documentation

950

mesh_entity_list A string containing space delimited ids, Cubit command form (i.e. 'all', '1 to 8', '1 2 3', etc)

Return

A list of geometry owners in the form of 'surface x', 'curve y', etc.

[int] get_volume_nodes(vol_id)

Get list of node ids owned by a volume. Excludes nodes owned by bounding surfs, curves and verts.

Parameters

vol_id id of volume

Return

vector of IDs of nodes owned by the volume

[int] get_surface_nodes(surf_id)

Get list of node ids owned by a surface. Excludes nodes owned by bounding curves and verts.

Parameters

surf_id id of surface

Return

vector of IDs of nodes owned by the surface

[int] get_curve_nodes(curv_id)

Get list of node ids owned by a curve. Excludes nodes owned by bounding vertices.

Parameters

curv_id id of curve

Return

vector of IDs of nodes owned by the curve

int get_vertex_node(vert_id)

Get the node owned by a vertex.

Parameters

vert_id id of vertex

Return

ID of node owned by the vertex. returns -1 of doesn't exist

CubitInterface Class Reference

951

int get_id_from_name(name)

Get id for a named entity.

Example

 entity_id = cubit.get_id_from_name("member_2")

Parameters

name Name of the entity to examine return Integer representing the entity

[int] get_group_groups(group_id)

Get group groups (groups that are children of another group).

Parameters

group_id ID of the group to examine return List of group ids contained in the specified group

[int] get_group_volumes(group_id)

Get group volumes (volumes that are children of a group).

Parameters

group_id ID of the group to examine return List of volume ids contained in the specified group

[int] get_group_surfaces(group_id)

Get group surfaces (surfaces that are children of a group).

Parameters

group_id ID of the group to examine return List of surface ids contained in the specified group

[int] get_group_curves(group_id)

Get group curves (curves that are children of a group).

Parameters

group_id ID of the group to examine return List of curve ids contained in the specified group

Cubit 13.2 User Documentation

952

[int] get_group_vertices(group_id)

Get group vertices (vertices that are children of a group).

Parameters

group_id ID of the group to examine return List of vertex ids contained in the specified group

[int] get_group_nodes(group_id)

Get group nodes (nodes that are children of a group).

Parameters

group_id ID of the group to examine return List of node ids contained in the specified group

[int] get_group_edges(group_id)

Get group edges (edges that are children of a group).

Parameters

group_id ID of the group to examine return List of edge ids contained in the specified group

[int] get_group_quads(group_id)

Get group quads (quads that are children of a group).

Parameters

group_id ID of the group to examine return List of quad ids contained in the specified group

[int] get_group_tris(group_id)

Get group tris (tris that are children of a group).

Parameters

group_id ID of the group to examine return List of tri ids contained in the specified group

[int] get_group_tets(group_id)

Get group tets (tets that are children of a group).

Parameters

group_id ID of the group to examine return List of tet ids contained in the specified group

CubitInterface Class Reference

953

[int] get_group_hexes(group_id)

Get group hexes (hexes that are children of a group).

Parameters

group_id ID of the group to examine return List of hex ids contained in the specified group

int get_next_group_id()

Get the next available group id from Cubit.

delete_all_groups()

Delete all groups.

delete_group(group_id)

Delete a specific group.

Parameters

group_id ID of group to delete

set_max_group_id(max_group_id)

Reset Cubit's max group id This is really dangerous to use and exists only to overcome a limitation with Cubit. Cubit
keeps track of the next group id to assign. But those ids just keep incrementing in Cubit. Some of the power tools in the
Cubit GUI make groups 'under the covers' for various operations. The groups are immediately deleted. But, creating those
groups will cause Cubit's group id to increase and downstream journal files may be messed up because those journal files
are expecting a certain ID to be available.

Parameters

max_group_id

int create_new_group()

Create a new group.

Return

group_id ID of new group

remove_entity_from_group(group_id, entity_id, entity_type)

Remove a specific entity from a specific group.

Cubit 13.2 User Documentation

954

Example

 cubit.remove_entity_from_group(3, 22, "surface")

Parameters

group_id ID of group from which the entity will be removed

entity_id ID of the entity to be removed from the group

entity_type Type of the entity to be removed from the group. Note that only geometric entities can be removed

add_entity_to_group(group_id, entity_id, entity_type)

Add a specific entity to a specific group.

Example

 cubit.add_entity_to_group(3, 22, "surface")

Parameters

group_id ID of group to which the entity will be added

entity_id ID of the entity to be added to the group

entity_type Type of the entity to be added to the group. Note that this function is valid only for geometric entities

[int] get_mesh_group_parent_ids(element_type, element_id)

Get the group ids which are parents to the indicated mesh element.

Example

 parent_id_list = cubit.get_mesh_group_parent_ids("tri",

332)

CubitInterface Class Reference

955

Parameters

element_type Mesh type of the element

element_id ID of the mesh element return List of group ids that contain this mesh element

Bool is_mesh_element_in_group(element_type, element_id)

Indicates whether a mesh element is in a group.

Example

 if cubit.is_mesh_element_in_group("tet", 445):

Parameters

element_type Mesh type of the element

element_id ID of the mesh element return True if in a group, otherwise false

Bool is_part_of_list(target_id, id_list)

Routine to check for the presence of an id in a list of ids.

Parameters

target_id Target id

id_list List of ids

Return

True if target_id is member of id_list, otherwise false

int get_last_id(entity_type)

Get the id of the last created entity of the given type.

Example

 last_id = cubit.get_last_id("surface")

Cubit 13.2 User Documentation

956

Parameters

entity_type Type of the entity being queried

Return

Integer id of last created entity

str get_assembly_classification_level()

Get Classification Level for metadata.

Return

Requested data

str get_assembly_classification_category()

Get Classification Category for metadata.

Return

Requested data

str get_assembly_weapons_category()

Get Weapons Category for metadata.

Return

Requested data

str get_assembly_metadata(volume_id, data_type)

Get metadata for a specified volume id.

Parameters

volume_id ID of the volume

data_type Magic number representing the type of assembly information to return. 1 = Part Number, 2 = Description, 3 =
Material Description 4 = Material Specification, 5 = Assembly Path, 6 = Original File

Return

Requested data

Bool is_assembly_metadata_attached(volume_id)

Determine whether metadata is attached to a specified volume.

CubitInterface Class Reference

957

Parameters

volume_id ID of the volume

Return

True if metadata exists, otherwise false

str get_assembly_name(assembly_id)

Get the stored name of an assembly node.

Parameters

assembly_id Id that identifies the assembly node

Return

Name of the assembly node

str get_assembly_path(assembly_id)

Get the stored path of an assembly node.

Parameters

assembly_id Id that identifies the assembly node

Return

Path of the assembly node

str get_assembly_description(assembly_id)

Get the stored description of an assembly node.

Parameters

assembly_id Id that identifies the assembly node

Return

Description of the assembly node

int get_assembly_instance(assembly_id)

Get the stored instance number of an assembly node.

Parameters

assembly_id Id that identifies the assembly node

Cubit 13.2 User Documentation

958

Return

Instance of the assembly node

str get_assembly_file_format(assembly_id)

Get the stored file format of an assembly node.

Parameters

assembly_id Id that identifies the assembly node

Return

File Format of the assembly node

str get_assembly_units(assembly_id)

Get the stored units measure of an assembly node.

Parameters

assembly_id Id that identifies the assembly node

Return

Units of the assembly node

str get_assembly_material_description(assembly_id)

Get the stored material description of an assembly part.

Parameters

assembly_id Id that identifies the assembly node

Return

Material Description of the assembly part

str get_assembly_material_specification(assembly_id)

Get the stored material specification of an assembly part.

Parameters

assembly_id Id that identifies the assembly node

Return

Material Specification of the assembly part

CubitInterface Class Reference

959

int get_exodus_id(entity_type, entity_id)

Get the exodus/genesis id for this element.

Example

 exodus_id = cubit.get_exodus_id("hex", 221)

Parameters

entity_type The mesh element type

entity_id The mesh element id

Return

Exodus id of the element if element has been written out, otherwise 0

str get_geometry_owner(entity_type, entity_id)

Get the geometric owner of this mesh element.

Example

 geom_owner = cubit.get_geometry_owner("hex", 221)

Parameters

entity_type The mesh element type

entity_id The mesh element id

Return

Name of owner

[int] get_connectivity(entity_type, entity_id)

Get the list of node ids contained within a mesh entity.

Example

Cubit 13.2 User Documentation

960

 node_id_list = cubit.get_connectivity("hex", 221)

Parameters

entity_type The mesh element type

entity_id The mesh element id

Return

List of node ids

[int] get_expanded_connectivity(entity_type, entity_id)

Get the list of node ids contained within a mesh entity, including interior nodes.

Example

 node_id_list = cubit.get__expanded_connectivity("hex",

221)

Parameters

entity_type The mesh element type

entity_id The mesh element id

Return

List of all node ids associated with the element, including interior nodes

[int] get_sub_elements(entity_type, entity_id, dimension)

Get the lower dimesion entities associated with a higher dimension entities. For example get the faces associated with a
hex or the edges associated with a tri.

Example

 face_id_list = cubit.get_sub_elements("hex", 221, 2)

CubitInterface Class Reference

961

Parameters

entity_type The mesh element type of the higher dimension entity

entity_id The mesh element id

dimension The dimension of the desired sub entities

Return

List of ids of the desired dimension

[float] get_nodal_coordinates(node_id)

Get the nodal coordinates for a given node id.

Parameters

node_id The node id

Return

a triple containing the x, y, and z coordinates

[int] get_hex_nodes(hex_id)

Parameters

hex_id The hex id

Return

ordered node ids associated with the hex

[int] get_tet_nodes(tet_id)

Parameters

tet_id The tet id

Return

ordered node ids associated with the tet

[int] get_face_nodes(face_id)

Parameters

face_id The face id

Cubit 13.2 User Documentation

962

Return

ordered node ids associated with the face

[int] get_tri_nodes(tri_id)

Parameters

tri_id The tri id

Return

ordered node ids associated with the tri

Bool get_node_position_fixed(node_id)

Query "fixedness" state of node. A fixed node is not affecting by smoothing.

Parameters

node_id The node id

Return

True if constrained, otherwise false

str get_sideset_element_type(sideset_id)

Get the element type of a sideset.

Parameters

sideset_id The id of the sideset to be queried

Return

Element type

str get_block_element_type(block_id)

Get the element type of a block.

Parameters

block_id The block id

Return

Element type

CubitInterface Class Reference

963

int get_exodus_element_count(entity_id, entity_type)

Get the number of elements in a exodus entity.

Example

 element_count = cubit.get_exodus_element_count(2,

"sideset")

Parameters

entity_id The id of the entity

entity_type The type of the entity

Return

Number of Elements

int get_block_attribute_count(block_id)

Get the number of attributes in a block.

Parameters

block_id The block id

Return

Number of attributes in the block

float get_block_attribute_value(block_id, index)

Get a specific block attribute value.

Parameters

block_id The block id

index The index of the attribute

Return

List of attributes

[str] get_valid_block_element_types(block_id)

Get a list of potential element types for a block.

Cubit 13.2 User Documentation

964

Parameters

block_id The block id

Return

List of potential element types

int get_nodeset_node_count(nodeset_id)

Get the number of nodes in a nodeset.

Parameters

nodeset_id The nodeset id

Return

Number of nodes in the nodeset

int get_geometry_node_count(entity_type, entity_id)

Parameters

entity_type

entity_id

str get_mesh_element_type(entity_type, entity_id)

Get the mesh element type contained in the specified geometry.

Example

 element_type = cubit.get_mesh_element_type("surface", 2)

Parameters

entity_type The type of entity

entity_id The id of the entity

Return

Mesh element type for that entity

CubitInterface Class Reference

965

Bool is_on_thin_shell(bc_type_in, entity_id)

Determine whether a BC is on a thin shell. Valid for temperature, convection and heatflux.

Parameters

bc_type_in

entity_id

Bool temperature_is_on_solid(bc_type_in, entity_id)

Determine whether a BC temperature is on a solid. Valid for convection and temperature.

Parameters

bc_type_in

entity_id

Bool convection_is_on_solid(entity_id)

Determine whether a BC convection is on a solid. Valid for convection.

Parameters

entity_id

Bool convection_is_on_shell_area(entity_id, shell_area)

Determine whether a BC convection is on a shell top or bottom. Valid for convection.

Parameters

entity_id

shell_area

float get_convection_coefficient(entity_id, cc_type)

Get the convection coefficient.

Parameters

entity_id

cc_type

Cubit 13.2 User Documentation

966

float get_bc_temperature(bc_type, entity_id, temp_type)

Get the temperature. Valid for convection, temperature.

Parameters

bc_type

entity_id

temp_type

Bool temperature_is_on_shell_area(bc_type, bc_area, entity_id)

Determine whether a BC temperature is on a shell area. Valid for convection and temperature and on top, bottom,
gradient, and middle.

Parameters

bc_type

bc_area

entity_id

Bool heatflux_is_on_shell_area(bc_area, entity_id)

Determine whether a BC heatflux is on a shell area.

Parameters

bc_area

entity_id

float get_heatflux_on_area(bc_area, entity_id)

Get the heatflux on a specified area.

Parameters

bc_area

entity_id

int get_cfd_type(entity_id)

Get the cfd subtype for a specified cfd BC.

CubitInterface Class Reference

967

Parameters

entity_id ID of the cfd BC

Return

Integer corresponding to the type of cfd, as defined by CI_BCTypes

float get_contact_pair_friction_value(entity_id)

Get the contact pair's friction value.

Parameters

entity_id

float get_contact_pair_tolerance_value(entity_id)

Get the contact pair's tolerance value.

Parameters

entity_id

Bool get_contact_pair_tied_state(entity_id)

Get the contact pair's tied state.

Parameters

entity_id

Bool get_contact_pair_general_state(entity_id)

Get the contact pair's general state.

Parameters

entity_id

Bool get_contact_pair_exterior_state(entity_id)

Get the contact pair's exterior state.

Parameters

entity_id

Cubit 13.2 User Documentation

968

int get_displacement_coord_system(entity_id)

Get the displacement's coordinate system id.

Parameters

entity_id

str get_displacement_combine_type(entity_id)

Get the displacement's combine type which is "Overwrite", "Average", "SmallestCombine", or "LargestCombine".

Parameters

entity_id

float get_pressure_value(entity_id)

Get the pressure value.

Parameters

entity_id

str get_pressure_function(entity_id)

Get the pressure function.

Parameters

entity_id

float get_force_magnitude(entity_id)

Get the force magnitude from a force.

Parameters

entity_id

float get_moment_magnitude(entity_id)

Get the moment magnitude from a force.

Parameters

entity_id

CubitInterface Class Reference

969

[float] get_force_direction_vector(entity_id)

Get the direction vector from a force.

Parameters

entity_id

[float] get_force_moment_vector(entity_id)

Get the moment vector from a force.

Parameters

entity_id

str get_constraint_type(constraint_id)

Get the type of a specified constraint.

Parameters

constraint_id ID of the constraint

Return

A std::string indicating the type -- Kinematic, Distributing, Rigidbody

str get_constraint_reference_point(constraint_id)

Get the reference point of a specified constraint.

Parameters

constraint_id ID of the constraint

Return

A std::string indicating the reference point

str get_constraint_dependent_entity_point(constraint_id)

Get the dependent entity of a specified constraint.

Parameters

constraint_id ID of the constraint

Return

A std::string indicating the dependent entity

Cubit 13.2 User Documentation

970

float get_material_property(mp, entity_id)

Parameters

mp

entity_id

int get_media_property(entity_id)

Parameters

entity_id

[str] get_material_name_list()

[str] get_media_name_list()

set_label_type(entity_type, label_flag)

Parameters

entity_type

label_flag

int get_label_type(entity_type)

Parameters

entity_type

Body body(id_in)

Gets the body object from an ID.

Parameters

id_in The ID of the body

Return

The body object

CubitInterface Class Reference

971

Volume volume(id_in)

Gets the volume object from an ID.

Parameters

id_in The ID of the volume

Return

The volume object

Surface surface(id_in)

Gets the surface object from an ID.

Parameters

id_in The ID of the surface

Return

The surface object

Curve curve(id_in)

Gets the curve object from an ID.

Parameters

id_in The ID of the curve

Return

The curve object

Vertex vertex(id_in)

Gets the vertex object from an ID.

Parameters

id_in The ID of the vertex

Return

The vertex object

reset()

Executes a reset within cubit.

Cubit 13.2 User Documentation

972

Body brick(width, depth, height)

Creates a brick of specified width, depth, and height.

Parameters

width The width of the brick being created

depth The depth of the brick being created

height The height of the brick being created

Return

A Bodyobject of the newly created brick

Body sphere(radius, x_cut, y_cut, z_cut, inner_radius)

Creates all or part of a sphere.

Parameters

radius The radius of the sphere

x_cut If 1, cuts sphere by yz plane (default to 0)

y_cut If 1, cuts sphere by xz plane (default to 0)

z_cut If 1, cuts sphere by xy plane (default to 0)

inner_radius The inside radius if the sphere is hollow (default to 0)

Return

A Bodyobject of the newly created sphere

Body prism(height, sides, major, minor)

Creates a prism of the specified dimensions.

Parameters

height The height of the prism

sides The number of sides of the prism

major The major radius

minor The minor radius

Return

A Bodyobject of the newly created prism

CubitInterface Class Reference

973

Body pyramid(height, sides, major, minor, top)

Creates a pyramid of the specified dimensions.

Parameters

height The height of the pyramid

sides The number of sides of the pyramid

major The major radius

minor The minor radius

top determines size for the top of the pyramid. Defaults to 0, meaning it will go to a point

Return

A Bodyobject of the newly created pyramid

Body cylinder(hi, r1, r2, r3)

creates a cylinder of the specified dimensions

Parameters

hi the height of the cylinder

r1 radius in the x direction

r2 radius in the y direction

r3 used to adjust the top. If set to 0, will produce a cone. Set to r1/r2 to get a straight cylinder

Return

A body object of the newly created cylinder

Body torus(r1, r2)

creates a torus of the specified dimensions

Parameters

r1 radius from center to center of circle to be swept (r1>r2)

r2 radius of circle swept to create torus (r1>r2)

Return

A Bodyobject of the newly created torus

Cubit 13.2 User Documentation

974

Vertex create_vertex(x, y, z)

Creates a vertex at a x,y,z.

Parameters

x The x location of the vertex (default to 0)

y The y location of the vertex (default to 0)

z The z location of the vertex (default to 0)

Return

A Vertexobject

Curve create_curve(v0, v1)

Creates a curve between two vertices.

Parameters

v0 The start vertex

v1 The end vertex

Return

A Curveobject

Body create_surface(curves)

Creates a surface from boundary curves.

Parameters

curves A list of curve objects from which to make the surface

Return

A Bodyobject of the newly created Surface

[Body] sweep_curve(curves, along_curves, draft_angle, draft_type, rigid)

Create a Body or a set of Bodies from a swept curve.

Parameters

curves A list of curves to sweep

along_curves A list of curves to sweep along

draft_angle The sweep draft angle (default to 0)

CubitInterface Class Reference

975

draft_type The draft type (default to 0) 0 => extended (draws two straight tangent lines from the ends of each
segment until they intersect) 1 => rounded (create rounded corner between segments) 2 => natural
(extends the shapes along their natural curve) ***

rigid The inside radius if the sphere is hollow (default to False)

Return

A List of newly created Bodies

Body copy_body(init_body)

Creates a copy of the input Body.

Parameters

init_body The Bodyto be copied

Return

A Bodyidentical to the input Body

[Body] tweak_surface_offset(surfaces, distances)

Performs a tweak surface offset command.

Parameters

surfaces A list of surface objects to offset

distances A list of distances associated with the offset for each surface

Return

A list of the body objects of the modified bodies

[Body] tweak_surface_remove(surfaces, extend_ajoining, keep_old,
preview)

Removes a surface from a body and extends the surrounding surfaces if extend_ajoining is true.

Parameters

surfaces The surfaces to be removed

extend_ajoining Extend the ajoining surfaces (default to true)

keep_old Keep the old body (default to false)

preview Flag to show the preview or not (default to false)

Return

A list of changed body objects

Cubit 13.2 User Documentation

976

[Body] tweak_curve_remove(curves, keep_old, preview)

Removes a curve from a body and extends the surrounding surface to fill the gap.

Parameters

curves

keep_old Keep the old body (defaults to false)

preview Flag to show the preview (defaults to false)

Return

A list of changed body objects

[Body] tweak_curve_offset(curves, distances, keep_old, preview)

Performs a tweak curve offset command.

Parameters

curves A list of curve objects to offset

distances A list of distances associated with the offset for each curve

keep_old Keep the old body (defaults to false)

preview Flag to show the preview (defaults to false)

Return

A list of changed body objects

[Body] tweak_vertex_fillet(verts, r0, keep_old, preview)

Performs a tweak vertex fillet command.

Parameters

verts A list of vertex objects to fillet

r0 radius of the fillet

keep_old Keep the old body (defaults to false)

preview Flag to show the preview (defaults to false)

Return

A list of changed body objects

CubitInterface Class Reference

977

[Body] subtract(tool_in, from_in, imprint_in, keep_old_in)

Performs a boolean subtract operation.

Parameters

tool_in List of Bodyobjects to subtract

from_in List of Bodyobjects to be subtracted from

imprint_in Flag to set the imprint (defaults to false)

keep_old_in Flag to keep the old volume (defaults to false)

Return

A list of changed body objects

[Body] unite(body_in, keep_old_in)

Performs a boolean unite operation.

Parameters

body_in A list of body objects to unite

keep_old_in Flag to keep old bodies (defaults to false)

Return

A list of changed bodies

move(entity, vector, preview)

Moves the Entity the specified vector.

Parameters

entity The Entityto be moved

vector The vector the Entitywill be moved

preview Flag to show the preview or not, default is false

scale(entity, factor, preview)

Scales the Entity according to the specified factor.

Parameters

entity The Entityto be scaled

factor The scale factor

Cubit 13.2 User Documentation

978

preview Flag to show the preview or not, default is false

reflect(entity, axis, preview)

Reflect the Entity about the specified axis.

Parameters

entity The Entityto be reflected

axis The axis to be reflected about

preview Flag to show the preview or not, default is false

[int] get_volumes_for_node(node_name, node_instance)

Parameters

node_name

node_instance

int get_mesh_error_count()

979

PyObservable

The base class of everything in the CubitInterface.

The PyObservableclass allows a user to be able to 'observe' any entity in the CubitInterface. Thus, a user would be able
to handle events within Cubit appropriately.

Example

 import cubit

 class TestObserver(cubit.PyObserver):

 def notify_observers(self, obsvd, evt):

 if evt == 2:

 print 'Entity destroyed!'

 elif evt == 11 or evt == 12 or evt == 13:

 print 'Volume changed!'

 else:

 print 'Unknown event! '

 testobs = TestObserver()

 br = cubit.brick(1,1,1)

 testobs.register_observable(br)

 cubit.scale(br,2)

 cubit.cmd('delete body 1')

Inheritance

PyObservable
Entity
GeomEntity
Body | Curve | Surface | Vertex | Volume

Class Member Functions

 notify_observers Notify the observer of a event.

Cubit 13.2 User Documentation

980

Member Function Documentation

notify_observers(event_type)

Notify the observer of a event.

Example

 import cubit

 class TestObserver(cubit.PyObserver):

 def notify_observers(self, obsvd, evt):

 if evt == 2:

 print 'Entity destroyed!'

 elif evt == 11 or evt == 12 or evt == 13:

 print 'Volume changed!'

 else:

 print 'Unknown event! '

Parameters

event_type The type of event

981

PyObserver

A base class to be extended to perform custom actions on Cubit events.

Class Member Functions

 register_observable Register a PyObservable to be watched by this PyObserver.

 unregister_observable Unregister a PyObservable to be watched by this PyObserver.

 notify_observers The function called when an event happens.

Member Function Documentation

register_observable(observable)

Register a PyObservable to be watched by this PyObserver.

Parameters

observable The PyObservableto be observed by this PyObserver

unregister_observable(observable)

Unregister a PyObservable to be watched by this PyObserver.

Parameters

observable The PyObservableto stop being observed by this PyObserver

notify_observers(observable, event_type)

The function called when an event happens.

Parameters

observable The PyObservableon/to which the event is occuring

event_type An integer representing a specific event type

983

Entity

The base class of all the geometry and mesh types.

Inheritance

PyObservable
Entity
GeomEntity
Body | Curve | Surface | Vertex | Volume

Class Member Functions

 destroy_cubit_entity

[float] bounding_box Get the bounding box of the Entity.

[float] center_point Get the center point of the Entity.

int id Get the id of the Entity.

 is_visible Set the visibility state of the Entity.

int is_visible Get the visibility state of the Entity.

 is_transparent Set the tranparency state of the Entity.

int is_transparent Get the tranparency state of the Entity.

Member Function Documentation

destroy_cubit_entity()

[float] bounding_box()

Get the bounding box of the Entity.

Example

 b_box = entity.bounding_box()

Return

The bounding box as a vector (or list) where the indices correspond to the values as follows: 0 - minimum x value 1 -
minimum y value 2 - minimum z value 3 - maximum x value 4 - maximum y value 5 - maximum z value

Cubit 13.2 User Documentation

984

[float] center_point()

Get the center point of the Entity.

Example

 center = entity.center_point()

Return

The center point as a vector (or list) where the indices correspond to the values as follows: 0 - x value 1 - y value 2 - z
value

int id()

Get the id of the Entity.

Example

 id = entity.id()

Return

The id of the Entity

is_visible(visibility_flag)

Set the visibility state of the Entity.

Example

 entity.is_visible(1)

Parameters

visibility_flag The flag that sets whether the Entityis visible (1) or not (0)

Entity Class Reference

985

int is_visible()

Get the visibility state of the Entity.

Example

 vis = entity.is_visible()

Return

The current visiblity state of the Entity(1 if visible, 0 if not)

is_transparent(transparency_flag)

Set the tranparency state of the Entity.

Example

 entity.is_transparent(1)

Parameters

transparency_flag The flag that sets whether the Entityis transparent (1) or not (0)

int is_transparent()

Get the tranparency state of the Entity.

Example

 trans = entity.is_transparent()

Return

The current transparency state of the Entity(1 if transparent, 0 if not)

987

GeomEntity

The base class for specifically the Geometry types (Body, Surface, etc.).

Inheritance

PyObservable
Entity
GeomEntity
Body | Curve | Surface | Vertex | Volume

Class Member Functions

 mesh Mesh the GeomEntity.

Bool is_meshed Return the current mesh state of the GeomEntity.

 smooth Smooths the mesh on the GeomEntity.

 remove_mesh Removes the mesh on the GeomEntity.

str entity_name Return the first name of the GeomEntity.

 entity_name Assign a name to the GeomEntity.

[str] entity_names Return the all the names of the GeomEntity.

int num_names Return the number of names for the GeomEntity.

 remove_entity_name Remove a specific name from the list of names assigned to the GeomEntity.

 remove_entity_names Remove all the names assigned to the GeomEntity.

int dimension Get the dimensions of the GeomEntity.

[Body] bodies Get the bodies in the GeomEntity.

[Volume] volumes Get the volumes in the GeomEntity.

[Surface] surfaces Get the surfaces in the GeomEntity.

[Curve] curves Get the curves in the GeomEntity.

[Vertex] vertices Get the vertices in the GeomEntity.

Member Function Documentation

mesh()

Mesh the GeomEntity.

Cubit 13.2 User Documentation

988

Example

 geomEntity.mesh()

Bool is_meshed()

Return the current mesh state of the GeomEntity.

Example

 mesh = geomEntity.is_meshed()

Return

Whether the GeomEntityis meshed or not

smooth()

Smooths the mesh on the GeomEntity.

Example

 geomEntity.smooth()

remove_mesh()

Removes the mesh on the GeomEntity.

Example

 geomEntity.remove_mesh()

GeomEntity Class Reference

989

str entity_name()

Return the first name of the GeomEntity.

Example

 name = geomEntity.entity_name()

Return

The first name of the GeomEntity

entity_name(name)

Assign a name to the GeomEntity.

Example

 geomEntity.entity_name("Brick1")

Parameters

name The name to be assigned to the GeomEntity

[str] entity_names()

Return the all the names of the GeomEntity.

Example

 names = geomEntity.entity_names()

Return

A vector (or list) of all the names of the GeomEntity

Cubit 13.2 User Documentation

990

int num_names()

Return the number of names for the GeomEntity.

Example

 num = geomEntity.num_names()

Return

The number of names for the GeomEntity

remove_entity_name(name)

Remove a specific name from the list of names assigned to the GeomEntity.

Example

 geomEntity.remove_entity_name("Brick1")

Parameters

name The name to be removed from the list of names assigned to the GeomEntity

remove_entity_names()

Remove all the names assigned to the GeomEntity.

Example

 geomEntity.remove_entity_names()

int dimension()

Get the dimensions of the GeomEntity.

GeomEntity Class Reference

991

Example

 dim = geomEntity.dimension()

Return

The dimension of the GeomEntity

[Body] bodies()

Get the bodies in the GeomEntity.

Example

 bodies = geomEntity.bodies()

Return

A vector (or list) of bodies contained within the GeomEntity

[Volume] volumes()

Get the volumes in the GeomEntity.

Example

 volumes = geomEntity.volumes()

Return

A vector (or list) of volumes contained within the GeomEntity

[Surface] surfaces()

Get the surfaces in the GeomEntity.

Cubit 13.2 User Documentation

992

Example

 surfaces = geomEntity.surfaces()

Return

A vector (or list) of surfaces contained within the GeomEntity

[Curve] curves()

Get the curves in the GeomEntity.

Example

 curves = geomEntity.curves()

Return

A vector (or list) of curves contained within the GeomEntity

[Vertex] vertices()

Get the vertices in the GeomEntity.

Example

 vertices = geomEntity.vertices()

Return

A vector (or list) of vertices contained within the GeomEntity

993

Body

Defines a body object that mostly parallels Cubit's Body class.

Inheritance

PyObservable
Entity
GeomEntity
Body

Class Member Functions

[float] get_mass_props Get the mass properties of the Body, specifically the center of gravity.

int point_containment Get whether a point is in, on, or outside the Body.

float volume Get the volume of the Body.

Bool is_sheet_body Get whether the Body is a sheet body or not.

Member Function Documentation

[float] get_mass_props()

Get the mass properties of the Body, specifically the center of gravity.

Example

 props = body.get_mass_props()

Return

A vector (or list) of numerical data corresponding to the center of gravity of the body with indices as follows: 0 - x
coordinate 1 - y coordinate 2 - z coordinate

int point_containment(loc_in)

Get whether a point is in, on, or outside the Body.

Example

 on_out_in = body.point_containment([0,0,0])

Cubit 13.2 User Documentation

994

Parameters

loc_in

Return

Whether a point is unknown (-1), outside (0), in (1), or on (2) the Body

float volume()

Get the volume of the Body.

Example

 vol = body.volume()

Return

The volume of the Body

Bool is_sheet_body()

Get whether the Body is a sheet body or not.

Example

 is_sheet = body.is_sheet_body()

Return

Whether the Bodyis a sheet body or not

995

Surface

Defines a surface object that mostly parallels Cubit's RefFace class.

Inheritance

PyObservable
Entity
GeomEntity
Surface

Class Member Functions

 color Set the color of the surface.

int color Get the color of the surface.

[[Curve]] ordered_loops Get the ordered loops of the Surface.

[float] normal_at Get the normal at a particular point on the Surface.

[float] closest_point_trimmed Get the nearest point on the Surface to point specified.

[float] closest_point_trimmed Get the nearest point on the Surface to point specified.

int point_containment Get whether a point is on or off of the Surface.

[float] principal_curvatures Get the principal curvatures of the Surface.

[float] position_from_u_v Get the Cartesian coordinates from the uv coordinates on the Surface.

[float] u_v_from_position Get the uv coordinates from the supplied Cartesian coordinates on the Surface.

[float] get_param_range_U Get range of u for the Surface.

[float] get_param_range_V Get range of v for the Surface.

float area Get area of the Surface.

Bool is_planar Get whether the Surface is planar or not.

Bool is_cylindrical Get whether the Surface is cylindrical or not.

Member Function Documentation

color(value)

Set the color of the surface.

Example

Cubit 13.2 User Documentation

996

 surface.color(0)

Parameters

value The color value that the surface will have

int color()

Get the color of the surface.

Example

 col = surface.color()

Return

The color value associated with the surface's current color

[[Curve]] ordered_loops()

Get the ordered loops of the Surface.

Example

 loops = surface.ordered_loops()

Return

A vector of vectors (or list of lists) of Curves in loops: 0, 0 - loop 1 curve 1 0, 1 - loop 1 curve 2 1, 0 - loop 2 curve 1 etc...

[float] normal_at(location)

Get the normal at a particular point on the Surface.

Example

 norm = surface.normal_at([0,0,0])

Surface Class Reference

997

Parameters

location A vector containing three values that are the coordinates of a point

Return

A vector (or list) of doubles representing values of normal vector as follows: 0 - x value 1 - y value 2 - z value

[float] closest_point_trimmed(location)

Get the nearest point on the Surface to point specified.

Example

 nearest = surface.closest_point_trimmed([0,0,0])

Parameters

location A vector containing three values that are the coordinates of a point

Return

A vector (or list) of doubles representing values of nearest point as follows: 0 - x coordinate 1 - y coordinate 2 - z
coordinate

[float] closest_point_trimmed(location)

Get the nearest point on the Surface to point specified.

Example

 nearest = surface.closest_point_trimmed([0,0,0])

Parameters

location A vector containing three values that are the coordinates of a point

Return

A vector (or list) of doubles representing values of nearest point as follows: 0 - x coordinate 1 - y coordinate 2 - z
coordinate

Cubit 13.2 User Documentation

998

int point_containment(point_in)

Get whether a point is on or off of the Surface.

Example

 on_off = surface.point_containment([0,0,0])

Parameters

point_in A vector containing three values that are the coordinates of a point

Return

A python boolean representing whether the point is off (0) or on (1) the Surface

[float] principal_curvatures(point)

Get the principal curvatures of the Surface.

Example

 curvatures = surface.principal_curvatures([0,0,0])

Parameters

point A vector containing three values that are the coordinates of a point

Return

A list of two floats representing the curvatures 0 - curvature 1 1 - curvature 2

[float] position_from_u_v(u, v)

Get the Cartesian coordinates from the uv coordinates on the Surface.

Example

 pos = surface.position_from_u_v(0, 0)

Surface Class Reference

999

Parameters

u The u parameter

v The v parameter

Return

The Cartesian coordinates of the supplied uv coordinates as a vector: 0 - x coordinate 1 - y coordinate 2 - z coordinate

[float] u_v_from_position(location)

Get the uv coordinates from the supplied Cartesian coordinates on the Surface.

Example

 uv = surface.position_from_u_v([0,0,0])

Parameters

location A vector containing the Cartesian coordinates

Return

The curvature values: 0 - The u parameter 1 - The v parameter

[float] get_param_range_U()

Get range of u for the Surface.

Example

 bounds = surface.get_param_range_U()

Return

The curvature values: 0 - The lowest value in the u direction 1 - The highest value in the u direction

[float] get_param_range_V()

Get range of v for the Surface.

Cubit 13.2 User Documentation

1000

Example

 lower_bound, upper_bound = surface.get_param_range_V()

Return

The curvature values: 0 - The lowest value in the v direction 1 - The highest value in the v direction

float area()

Get area of the Surface.

Example

 area = surface.area()

Return

The area of the Surface

Bool is_planar()

Get whether the Surface is planar or not.

Example

 planar = surface.is_planar()

Return

Whether the Surfaceis planar or not

Bool is_cylindrical()

Get whether the Surface is cylindrical or not.

Surface Class Reference

1001

Example

 cyl = surface.is_cylindrical()

Return

Whether the Surfaceis cylindrical or not

1003

Curve

Defines a curve object that mostly parallels Cubit's RefEdge class.

Inheritance

PyObservable
Entity
GeomEntity
Curve

Class Member Functions

 color Set the color of the Curve.

int color Get the color of the Curve.

[float
]

tangent Get the tangent to the Curve at a particular point.

[float
]

curvature Get the curvature of the Curve at a particular point.

[float
]

closest_point Get the curvature of the Curve at a particular point.

[float
]

closest_point_trimmed Get the curvature of the Curve at a particular point.

float length Get the length of the Curve.

[float
]

curve_center Get the center point of the Curve.

[float
]

position_from_fraction Get the position of the point a specified fraction along the Curve.

float start_param Get the lowest value of the Curve in uv space.

float end_param Get the highest value of the Curve in uv space.

float u_from_position Get the u value of a particular position on the Curve.

[float
]

position_from_u Get the position of a particular u value for the Curve.

float u_from_arc_length Get the u value for a point a specified arc length away from a specified root parameter
on the Curve.

float fraction_from_arc_length Get the fraction along the Curve a specified arc length is away from a given Vertex.

[float
]

point_from_arc_length Get the position on a Curve that is a specified arc length away from the specified root
parameter.

float length_from_u Get the length between two specified parameters on a Curve.

Cubit 13.2 User Documentation

1004

Bool is_periodic Get whether the Curve is periodic or not.

Member Function Documentation

color(value)

Set the color of the Curve.

Example

 curve.color(0)

Parameters

value The color value that the curve will have

int color()

Get the color of the Curve.

Example

 col = curve.color()

Return

The color value associated with the curve's current color

[float] tangent(point)

Get the tangent to the Curve at a particular point.

Example

 tan = curve.tangent([0,0,0])

Curve Class Reference

1005

Parameters

point A vector containing 3 doubles representing coordinates of a location on the Curve

Return

The tangent to the Curveat the location specified

[float] curvature(point)

Get the curvature of the Curve at a particular point.

Example

 curvature = curve.curvature([0,0,0])

Parameters

point A vector containing 3 doubles representing coordinates of a location on the Curve

Return

The curvature of the Curveat the location specified

[float] closest_point(point)

Get the curvature of the Curve at a particular point.

Example

 close = curve.closest_point([0,0,0])

Parameters

point A vector containing 3 doubles representing coordinates of a location on the Curve

Return

The closest point to the Curvefrom the location specified

[float] closest_point_trimmed(point)

Get the curvature of the Curve at a particular point.

Cubit 13.2 User Documentation

1006

Example

 close = curve.closest_point([0,0,0])

Parameters

point A vector containing 3 doubles representing coordinates of a location on the Curve

Return

The closest point to the Curvefrom the location specified

float length()

Get the length of the Curve.

Example

 len = curve.length()

Return

The length of the Curve

[float] curve_center()

Get the center point of the Curve.

Example

 center = curve.curve_center()

Return

A vector containing the coordinates of the Curve's center according to the following: 0 - x coordinate 1 - y coordinate 2 - z
coordinate

Curve Class Reference

1007

[float] position_from_fraction(fraction_along_curve)

Get the position of the point a specified fraction along the Curve.

Example

 pos = curve.position_from_fraction(0.5)

Parameters

fraction_along_curve A decimal value between 0 and 1 to determine a particular position along the Curve

Return

A vector containing the coordinates of the position a specified fraction along the Curve: 0 - x coordinate 1 - y coordinate 2
- z coordinate

float start_param()

Get the lowest value of the Curve in uv space.

Example

 start = curve.start_param()

Return

The beginning value of the parameter

float end_param()

Get the highest value of the Curve in uv space.

Example

 end = curve.end_param()

Cubit 13.2 User Documentation

1008

Return

The ending value of the parameter

float u_from_position(position)

Get the u value of a particular position on the Curve.

Example

 u = curve.u_from_position([0,0,0])

Parameters

position A vector containing the coordinates of the input position

Return

The u value of the position along the Curve

[float] position_from_u(u_value)

Get the position of a particular u value for the Curve.

Example

 position = curve.position_from_u(0.5)

Parameters

u_value The u value of the position along the Curve

Return

A vector containing the coordinates of the output position

float u_from_arc_length(root_param, arc_length)

Get the u value for a point a specified arc length away from a specified root parameter on the Curve.

Example

Curve Class Reference

1009

 u = curve.u_from_arc_length(0, 0.5)

Parameters

root_param The beginning parameter from which the arc length is added to

arc_length The length away from the root parameter of the output parameter

Return

The u value of the Curvethe arc length away from the root parameter

float fraction_from_arc_length(root_vertex, length)

Get the fraction along the Curve a specified arc length is away from a given Vertex.

Example

 fraction = curve.fraction_from_arc_length(vertex, 0.5)

Parameters

root_vertex The Vertexto start from (vertex object)

length The length along the Curveaway from the root Vertex

Return

The fraction of the Curvethat is the specified length away from the specified Vertex

[float] point_from_arc_length(root_param, arc_length)

Get the position on a Curve that is a specified arc length away from the specified root parameter.

Example

 position = curve.point_from_arc_length(0, 0.5)

Cubit 13.2 User Documentation

1010

Parameters

root_param The root parameter from which the arc length is added to

arc_length The arc length along the Curveaway from the root parameter

Return

A vector that contains the coordinates of a position a specified arc length away from the root parameter

float length_from_u(parameter1, parameter2)

Get the length between two specified parameters on a Curve.

Example

 length = curve.length_from_u(0, 0.5)

Parameters

parameter1 The beginning parameter

parameter2 The ending parameter

Return

The length between the two specified paramters along the Curve

Bool is_periodic()

Get whether the Curve is periodic or not.

Example

 periodic = curve.is_periodic()

Return

Whether the Curveis periodic or not

1011

Vertex

Defines a vertex object that mostly parallels Cubit's RefVertex class.

Inheritance

PyObservable
Entity
GeomEntity
Vertex

Class Member Functions

 color Set the color of the Vertex.

int color Get the color of the Vertex.

[float] coordinates Get the Cartesian coordinates of the Vertex.

Member Function Documentation

color(value)

Set the color of the Vertex.

Example

 vertex.color(0)

Parameters

value The color value that the vertex will have

int color()

Get the color of the Vertex.

Example

 col = vertex.color()

Cubit 13.2 User Documentation

1012

Return

The color value associated with the vertex's current color

[float] coordinates()

Get the Cartesian coordinates of the Vertex.

Example

 position = vertex.coordinates()

Return

A vector containing the coordinates of the Vertexwith indices corresponding to the coordinates as follows: 0 - x coordinate
1 - y coordinate 2 - z coordinate

1013

Volume

Defines a volume object that mostly parallels Cubit's RefVolume class.

Inheritance

PyObservable
Entity
GeomEntity
Volume

Class Member Functions

float volume Get the volume of the Volume.

 color Set the color of the Volume.

int color Get the color of the Volume.

[float] principal_axes Get the principal axes of the Volume.

[float] principal_moments Get the principal moments of the Volume.

[float] centroid Get the centroid of the Volume.

Member Function Documentation

float volume()

Get the volume of the Volume.

Example

 vol = volume.volume()

Return

The volume of the Volume

color(value)

Set the color of the Volume.

Example

Cubit 13.2 User Documentation

1014

 volume.color(0)

Parameters

value The color value that the volume will have

int color()

Get the color of the Volume.

Example

 col = volume.color()

Return

The color value associated with the volume's current color

[float] principal_axes()

Get the principal axes of the Volume.

Example

 axes = volume.principal_axes()

Return

A vector (or list) of the principal axes of the volume with the indices of the vector corresponding to the values as follows: 0
- axis 1 x value 1 - axis 1 y value 2 - axis 1 z value 3 - axis 2 x value 4 - axis 2 y value 5 - axis 2 z value 6 - axis 3 x value
7 - axis 3 y value 8 - axis 3 z value

[float] principal_moments()

Get the principal moments of the Volume.

Example

Volume Class Reference

1015

 moments = volume.principal_moments()

Return

A vector (or list) of the principal moments of the volume with the indices of the vector corresponding to the values as
follows: 0 - x moment 1 - y moment 2 - z moment

[float] centroid()

Get the centroid of the Volume.

Example

 centroid = volume.centroid()

Return

A vector (or list) of the coordinates of the centroid of the volume with the indices of the vector corresponding to the values
as follows: 0 - x coordinate 1 - y coordinate 2 - z coordinate

1017

CubitFailureException

An exception class to alert the caller when the underlying Cubit function fails.

Class Member Functions

str what

Member Function Documentation

str what()

1019

InvalidEntityException

An exception class to alert the caller that an invalid entity was attempted to be used. Likely the user is attempting to use
an Entity who's underlying CubitEntity has been deleted.

Class Member Functions

str what

Member Function Documentation

str what()

1021

InvalidInputException

An exception class to alert the caller of a function that invalid inputs were entered.

Class Member Functions

str what

Member Function Documentation

str what()

1023

FASTQ

FASTQ is a program developed to create geometry and two-dimensional mesh. The user may choose to upload FASTQ
files and work with the files in an environment that accepts a limited number of FASTQ commands.

Table 1. FASTQ Commands Executable in Cubit

Syntax Description

set fastq on Cubit is in FASTQ mode.

set fastq off Cubit exits FASTQ mode.

nine Mesh will be generated using nine-node quadrilateral elements.

eight Mesh will be generated using eight-node quadrilateral elements.

five Mesh will be generated using five-node quadrilateral elements.

import fastq " *.fsq " Imports FASTQ files into Cubit.

Table 2. Brief List of Importable FASTQ Commands Supported in Cubit

Syntax Description

point <point_id> <x-coord> <y-coord> [<z-coord>]

This creates a point at the specified coordinates
with the id given by the user. The z-coordinate is
optional because FASTQ is a two-dimensional
meshing tool.

line <line_id> str <begin_pt> <end_pt> 0 [interval]
[factor]

This creates a straight line with the given beginning
and end points and an id is assigned to the line.
The interval option determines the number of
intervals or subdivisions of the line for mesh
generation. The factor option is the ratio of the
interval lengths as the intervals progress towards
the end point of the line. For example, if a factor of
2 is specified, each interval will be 2 times longer
than the interval before it. If a factor is not
specified, the default factor is 1.

line <line_id> circ <begin_pt> <end_pt>
<center_pt> [interval] [factor]

The command creates a circular arc (or logarithmic
spiral) about a center point. The beginning and
ending points specify where to position the circular
arc. The third point in the command specifies the
center of the circular arc. Interval and factor are
defined in the explanation for the Line (STR)
Command.

line <line_id> cirm <begin_pt> <end_pt>
<center_pt> [interval] [factor]

The CIRM line is similar to the CIRC line. The
difference between the CIRM line and the CIRC
line is the function of the third point. The third point
on a CIRM line is between the beginning and end
points and becomes a part of the circular arc. The
arc will be drawn through all three points.

line <line_id> cirr <begin_pt> <end_pt>
The command creates a circular arc. The
beginning and end points function the same as the

Cubit 13.2 User Documentation

1024

<center_pt> [interval] [factor] other commands to create a circular arc, but the
third point is used differently. The x value of the
third point will be used as the radius of the arc to
be created. If the x value is positive, the center
point is placed on the left of a straight line drawn
through the beginning and end points. If the x value
is negative, the center is placed on the right side of
the line.

line <line_id> para <begin_pt> <end_pt>
<center_pt> [interval] [factor]

This command creates the tip of a parabolic arc.
The third point is the peak of the parabola. The
beginning and end points must be equidistant from
the third point.

line <line_id> corn <begin_pt> <end_pt>
<center_pt> [interval] [factor]

The command creates a corner formed by two line
segments. The first segment is created by
connecting the first and third points. The second
segment is created by connecting the third and
second points. The line segments can have their
interval size set as if the two lines were one.

side <side_id> <list_of_lines>
This creates a group made up of the given lines
and assigns the id given by the user.

region <region_id> <block_id>
<list_of_lines_or_sides>

A region is a list of lines/sides that enclose an area
to be meshed. The region is formed from the list of
lines and/or sides; the region is given the id
specified by the user.

barset <barset_id> <block_id> <inside>
<list_of_lines>

The basis for two and three node element
generation is the barset. The barset id is the
identifying number for the barset. The block id is
the id assigned to all elements in the barset. The
inside point is a point on the inside of all lines in the
barset. All lines specified at the end of the
command will be included in the barset.

interval <interval> <list_of_lines>
This sets the number of intervals on a given line or
lines.

factor <factor> <list_of_lines>

This command sets the ratio of the interval lengths
as the intervals progress towards the end point of
the line. For example, if a factor of 2 is specified,
each interval will be 2 times longer than the interval
before it. If a factor is not specified, the default
factor is 1.

poinbc <node_bc_id> <list_of_points>

This command attaches boundary conditions to the
nodes that are created at point locations.The first
number to be entered is the id of the flag. After that
a list of all points to be flagged is entered.

linebc <node_bc_id> <list_of_lines>

This command attaches boundary conditions to
nodes created along certain lines. The first number
entered is the id of the flag. Following the id, all
lines to be flagged should be entered.

sidebc <side_bc_id> <list_of_lines>

This command attaches boundary conditions to all
nodes created on certain lines. The first number
entered is the id of the flag. All numbers entered
after that point are the ids of the sidesets included
in the flag.

FASTQ

1025

scheme <region_id> {m|t|b|c|u}

The letters after the region id indicate the meshing
scheme. Schemes specify a meshing algorithm for
mesh generation is a regionThe letter 'm' indicates
a general rectangle primitive, 't' indicates a triangle
primitive, 'b' indicates a transition primitive, 'c'
indicates a semicircle primitive, and 'u' indicates a
pentagon primitive.

1027

Periodic Space Filling Models (Tile)

This appendix describes commands for producing good-quality meshes of models that tile space, such as polycrystalline
materials models. Such models are often referred to as "periodic", but since that term already has a different meaning in
Cubit, the keyword "tile" is used instead. Meshes may be smoothed across periodic boundaries. Periodic boundary
conditions can be automatically set up, according to ALEGRA conventions (SAND99-2698).

Tile commands are alpha features and should be used with caution.

Initial setup

First import the model and merge the surfaces. Then mesh it with any method that will create meshes that match across
the tile (periodic) boundary, say with scheme polyhedron or sweep. Once the mesh is created, specify the "tile vectors",
which lets Cubit know that the nodes across the periodic boundaries are actually the same node:

Tile {x <period> | y <period> | z <period>}
[x <period>] [y <period>] [z <period>]

The 'period' you specify is actually the vector offset from one boundary to its match. Specify one tile command for each
coordinate axis that the model is periodic in. E.g.

Tile x 1
Tile y 1
Tile z 1

You can see which nodes are matched to a given node by some combination of tile vectors with the following command:
Tile Debug Node <id>

If you later need to delete these tile vectors, use the following command:

Tile Off

Creating Nodesets

Once the tile vectors are specified, you can set up periodic boundary conditions that meet ALEGRA specifications. The
command is:

Tile Nodeset <start_id>

This will create a nodeset for all combinations of tile vectors that actually connect nodes. The nodesets created will be
reported to you. The nodesets will be consecutive starting with the given 'start_id', except that if there are no nodes for a
particular combination there will be no nodeset and the id space will have a hole. To delete these nodesets, use the

Tile Off

command rather than the usual commands to delete nodesets.

Smoothing

Once a mesh has been created and the tile vectors have been specified, you can smooth the mesh and keep the periodic
boundaries exactly offset by the tile vectors. Only hex meshes are currently supported. A variety of 3d smoothing
schemes are supported, including laplacian, equipotential, untangle, and condition number.

Smooth Volume <volume_id_range> [Global [Float <dim>]]

Use "Global" if you are smoothing a collection of volumes. Use "float 3" if you want nodes on surfaces, curves, and
vertices to be able to move off of their geometric owner. Use "float 2" if you want just nodes on curves and vertices to be
able to move off of their owner (but stay on an owning surface). It is often useful to specify that some of the nodes are
fixed using the "node position fixed" command.

Cubit 13.2 User Documentation

1028

Example

make the geometry
#{brick_size=500}
brick wid {brick_size}
brick wid {brick_size}
body 2 move {brick_size} 0 0
brick wid {brick_size}
body 3 move {brick_size} {brick_size} 0
brick wid {brick_size}
body 4 move 0 {brick_size} 0
brick wid {brick_size}
body 5 move 0 0 {brick_size}
brick wid {brick_size}
body 6 move {brick_size} 0 {brick_size}
brick wid {brick_size}
body 7 move {brick_size} {brick_size} {brick_size}
brick wid {brick_size}
body 8 move 0 {brick_size} {brick_size}
merge all

mesh it
vol all int 3
mesh vol all

set the tiling vectors
tile x {brick_size*2}
tile y {brick_size*2}
tile z {brick_size*2}
tile debug node 256
tile debug node 245

set the tiling nodesets
tile nodeset

mess up the mesh quality
volume all smooth scheme randomize
smooth volume all
surface all smooth scheme randomize
smooth surface all
draw hex all

fix the mesh quality
node in volume all position fixed
node in surface all position free
volume all smooth scheme laplac
volume all smooth scheme untangle beta 0.08
smooth volume all global float 3
draw hex all

1029

Troubleshooting Guide

If this happens... Try This...

CUBIT gives me an error when attempting to import an IGES or STEP file
See Setting Up CUBIT for
STEP or IGES tools.

The Windows version of CUBIT (Claro) crashes at startup or exhibits
strange behavior

Try deleting the system
registry entry for Claro:

1. Start the Windows
registry editor by going to
Start->Run. Type in
"REGEDIT" (without the
quotes) in the Run
dialogue and hit OK.
2. Expand the tree
HKEY_CURRENT_USER-
>Software.
3. Click on Claro and hit
the "Delete" key.
4. Rerun Claro.
Warning - this removes all
customized settings in the
GUI (docking, user icons,
etc..).

CUBIT unexpectedly aborts while executing a command

While every effort has
been made to make
CUBIT bug-free,
occasional bugs may still
exist. To report a bug or
suggest improvements to
the program email cubit-
dev@sandia.gov. A
description of how to
reproduce the problem
along with any relevant
journal or input files will
assist the developers in
tracking down the error.

Corrected versions of
CUBIT are available on a
regular basis, so it may be
worthwhile to download
the latest version of
CUBIT prior to reporting
an error.

My Problem is not listed here

Check out the online
CUBIT Users Junkyard for
recent questions and
answers.

mailto:cubit-dev@sandia.gov
mailto:cubit-dev@sandia.gov
http://cubit.sandia.gov/release/doc-public/junkyard/
http://cubit.sandia.gov/release/doc-public/junkyard/

1031

References

Attaway, Stephen W.; Mello, Frank J.; Heinstein, Martin W.; Swegle, Jeffrey W.; Ratner, Julie A.; Zadoks, Rick Ian,
"PRONTO3D users' instructions: a transient dynamic code for nonlinear structural analysis," Sandia Report SAND 98-
1361 Sandia National Laboratories, Albuquerque, NM (1998)

Attaway S. W., unpublished, (1993)

Blacker, T. D., FASTQ Users Manual Version 1.2, SAND88-1326, Sandia National Laboratories, (1988)

Blacker, Ted D. "An Adaptive Finite Element Technique Using Element Equilibrium and Paving", American Society of
Mechanical Engineers, Annual Meeting Dallas Texas, November 25-30, 1990, ASME, Nov 1990

Blacker, Ted D., "Paving: A New Approach To Automated Quadrilateral Mesh Generation", International Journal For
Numerical Methods in Engineering, John Wiley, Num 32, pp.811-847, 1991

Blacker T.D. and Meyers R.J,."Seams and Wedges in Plastering: A 3D Hexahedral Mesh Generation Algorithm",
Engineering with Computers, Springer Verlag, Vol 2, Num 9, pp.83-93, 1993

Brewer, M., L. Diachin, P. Knupp, T. Leurent, and D. Melander, "The Mesquite Mesh Quality Improvement Toolkit",
Proceedings, 12th International Meshing Roundtable, 2003

Brewer, M., "Geometry-Tolerant Meshing Using Advancing-Front Techniques", SAND Report, (6-2008)

Butlin, Geoffrey and Clive Stops, "CAD Data Repair", 5th International Meshing Roundtable, pp.7-12, 1996

Clark Brett W., "Removing Small Features with Real Solid Modeling Operations", Submitted to 16th International Meshing
Roundtable, 2007

Cook, W. A. and W. R. Oakes (1982) Mapping methods for generating threedimensional meshes, Computers In
Mechanical Engineering, CIME Research Supplement:67-72, August 1982

Folwell, Nathan T. and Scott A. Mitchell, "Reliable Whisker Weaving via Curve Contraction", Proceedings, 7th
International Meshing Roundtable, Sandia National Lab, pp.365-378, October 1998

Freitag, Lori A. and Patrick M. Knupp , "Tetrahedral Element Shape Optimization via the Jacobian Determinant and
Condition Number", Proceedings, 8th International Meshing Roundtable, South Lake Tahoe, CA, U.S.A., pp.247-258,
October 1999

George, P.L., F. Hecht and E. Saltel, "Automatic Mesh Generator with Specified Boundary", Computer Methods in Applied
Mechanics and Engineering, Vol. 92, pp. 269-288, 1991

Hardwick, Mike, "DART System Analysis Presented to Simulation Sciences Seminar", June 28, 2005

Jones, R.E., QMESH: A Self-Organizing Mesh Generation Program, SLA - 73 - 1088, Sandia National Laboratories,
(1974).

Knupp, Patrick M., "Next-Generation Sweep Tool: A Method For Generating All-Hex Meshes On Two-And-One-Half
Dimensional Geometries", Proceedings, 7th International Meshing Roundtable, Sandia National Lab, pp.505-513, October
1998

Knupp, Patrick M., "Winslow Smoothing On Two-Dimensional Unstructured Meshes", Proceedings, 7th International
Meshing Roundtable, Sandia National Lab, pp.449-457, October 1998

Knupp, Patrick M., "Matrix Norms & The Condition Number: A General Framework to Improve Mesh Quality Via Node-
Movement", Proceedings, 8th International Meshing Roundtable, South Lake Tahoe, CA, U.S.A., pp.13-22, October 1999

Knupp, P., "Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated
Quantities, Part I", Int. J. Num. Meth. Engr.. 2000

Lovejoy, S. C. and R. G. Whirley, DYNA3D Example Problem Manual, UCRL-MA--105259, University Of California and
Lawrence Livermore National Laboratory, (1990).

Cubit 13.2 User Documentation

1032

Melander, Darryl J., Timothy J. Tautges, Steven E. Benzley "Generation of Multi-Million Element Meshes for Solid Model-
Based Geometries: The Dicer Algorithm" AMD-Vol. 220 Trends in Unstructured Mesh Generation, ASME, pp.131-135,
July 1997

Mezentsev, Andrey A., "Methods and Algorithms of Automated CAD Repair For Incremental Surface Meshing",
Proceedings, 8th International Meshing Roundtable, pp.299-309, 1999

Murdoch, Peter and Steven E. Benzley, "The Spatial Twist Continuum", Proceedings, 4th International Meshing
Roundtable, Sandia National Laboratories, pp.243-251, October 1995

Oddy, A., J. Goldak, M. McDill, and M. Bibby "A Distortion Metric for Isoparametric Finite Elements" Transactions of the
Canadian Soc. Mech. Engr., pp213-217, Vol 12, No 4, 1988.

Owen, Steven J. and David R. White, "Mesh-Based Geometry: A Systematic Approach to Constructing Geometry from the
Nodes and Elements of a Finite Element Mesh", 10th International Meshing Roundtable, Sandia National Laboratories,
pp. 83-96, October 2001

Owen, Steven J., Clark, B.W., Melander, D.J., Brewer, M.B., Shepherd, J.F., Merkley, K., Ernst, C., Morris, R., "An
Immersive Topology Environment for Meshing", Accepted to 16th International Meshing Roundtable, 2007

Parthasarathy V. N. et al, "A comparison of tetrahedron quality measures", Finite Elem. Anal. Des., Vol 15, 1993, 255-
261.

Price, M.A. and C.G. Armstrong, "Hexahedral Mesh Generation by Medial Surface Subdivision: Part I, Solids With Convex
Edges, International Journal for Numerical Methods in Engineering, Vol. 38, No. 19, pp. 3335-3359, 1995

W. Quadros, V. Vyas, M. Brewer, S. Owen, and K. Shimada, “A Computational Framework for Generating Sizing Function
in Assembly Meshing”, Proceedings, 14 th International Meshing Roundtable, 2005

W. R. Quadros, K. Shimada, and S. J. Owen, “Skeleton-based computational method for the generation of a 3D finite
element mesh sizing function”, Engineering with Computers, Springer Verlag, Vol 20, Num 3, pp.249-264, 2004

W. R. Quadros, S. J. Owen, M. Brewer, and K. Shimada, “Finite Element Mesh Sizing for Surfaces using Skeleton”,
Proceedings, 13 th International Meshing Roundtable, 2004

Robinson, J., "CRE method of element testing and Jacobian shape parameters, Eng. Comput., Vol. 4 (1987).

Ruppert, Jim , "A New and Simple Algorithm for Quality 2-Dimensional Mesh Generation". Technical Report UCB/CSD
92/694, University of California at Berkely, Berkely California (1992)

Scott, Michael A., Matthew N. Earp, Steven E. Benzley, and Michael B. Stephenson, "Adaptive Sweeping Techniques,"
Proceedings of the 14th International Meshing Roundtable, Springer, pp. 417-432, 2005.

Schoof, L. A.and Victor R. Yarberry, "EXODUS II A Finite Element Data Model", SAND92-2137, Sandia National
Laboratories, (1995).

Sheffer, A., "Model simplification for meshing using face clustering", Computer-Aided Design, Vol. 33, No. 13, pp. 925-
934(10), 2001

Staten, Matthew L., Steven J. Owen, Ted D. Blacker, "Unconstrained Paving and Plastering: A New Idea for All
Hexahedral Mesh Generation", Proceedings, 14th International Meshing Roundtable, pp.399-416, 2005

Staten, Matthew L., Robert A. Kerr, Steven J. Owen, Ted D. Blacker, "Unconstrained Paving and Plastering: Progress
Update", Proceedings, 15th International Meshing Roundtable, pp.469-486, 2006

Stimpson, CJ, Ernst, CD, Knupp, P, Pebay; P, and Thompson, D. "The Verdict Geometric Quality Library", Sandia Report
SAND2007-175, 2007

Tautges, Timothy J. and Scott A. Mitchell, "Whisker Weaving: Invalid Connectivity Resolution and Primal Construction
Algorithm", Proceedings, 4th International Meshing Roundtable, Sandia National Laboratories, pp.115-127, October 1995

Tautges, Timothy J., Ted Blacker, Scott A. Mitchell, "The Whisker Weaving Algorithm: A Connectivity-Based Method for
Constructing All-Hexahedral Finite Element Meshes", International Journal for Numerical Methods in Engineering, Wiley,
Vol 39, pp.3327-3349, 1996

Tautges, Timothy J., "The Common Geometry Module (CGM): A Generic, Extensible Geometry Interface", Proceedings,
9th International Meshing Roundtable, pp. 337-348, 2000

References

1033

Tautges, Timothy J., "Automatic Detail Reduction for Mesh Generation Applications", Proceedings, 10th International
Meshing Roundtable, pp.407-418, 2001

Taylor, L. M. and D. P. Flanagan, "Pronto 3D--A Three-Dimensional Transient Solid Dynamics Program", SAND87-1912,
Sandia National Laboratories, (1989).

Tipton ,R. E., "Grid Optimization by Equipotential Relaxation", unpublished, Lawrence Livermore National Laboratory,
(1990)

Walton, D. J. and D. S. Meek, "A Triangular G1 Patch from Boundary Curves," Computer-Aided Design, Vol. 28 No. 2 pp.
113-123 (1996)

Watson, David F. , "Computing the Delaunay Tessellation with Application to Voronoi Polytopes", The Computer Journal,
Vol 24(2) pp.167-172 (1981)

Wellman, Gerald W., "MAPVAR : a computer program to transfer solution data between finite element meshes", Sandia
Report SAND 99-0466 Sandia National Laboratories, Albuquerque, NM (1999)

White, David R. and Paul Kinney, "Redesign of the Paving Algorithm: Robustness Enhancements through Element by
Element Meshing", Proceedings, 6th International Meshing Roundtable, Sandia National Laboratories, pp.323-335,
October 1997

White, David R. and Sunil Saigal (2002) Improved Imprint and Merge for Conformal Meshing, Proceedings, 11th
International Meshing Roundtable, pp.285-296

White, David R. and Timothy J. Tautges, "Automatic Scheme Selection for Toolkit Hex Meshing", International Journal for
Numerical Methods in Engineering, Vol. 49, No. 1, pp. 127-144, 2000

Whiteley, M., D. White, S. Benzley and T. Blacker, "Two and Three-Quarter Dimensional Meshing Facilitators",
Engineering with Computers, Springer-Verlag, Vol 12, pp.155-167, December 1996

Yong Lu, Rajit Gadh, and Timothy J. Tautges, "Volume decomposition and feature recognition for hexahedral mesh
generation", Proceedings, 8th International Meshing Roundtable, pp. 269-280, 1999

1035

Credits

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Manager

 Ted Blacker, Manager, Computational Simulation Infrastructure Department (Org. 1543), Sandia National
Laboratories

Project Board

 Principal Investigator: Brett W. Clark, Org. 1543

 SNL Support Manager: Tim Tafoya, Org. 1545

 SNL Product Manager: Kristin Dion, Org. 1525

Research and Development

Computational Simulation Infrastructure Department, Org. 1543, Sandia National Laboratories,
Albuquerque, NM

 Byron W. Hanks

 Steven J. Owen

 Matthew L. Staten

 Roshan W. Quadros

Elemental Technologies Inc., American Fork, UT

 Ray J. Meyers

 Corey Ernst

 Karl Merkley

 Randy Morris

 Corey McBride

 Mark Richardson

 Clinton Stimpson

 Mark Dewey

 Ernie Perry

Contractors

 Michael B. Stephenson, Provo, UT

Caterpillar Co., Peoria, IL

 Andrew Rout

 Sam Showman

 Alex Hays

Cubit 13.2 User Documentation

1036

Brigham Young University, UT

 Steve Benzley (PI)

 Jared Edgel

 Tim Miller

 Gaurab Paudel

 Brad Mechem

Carnegie Mellon University, PA

 Kenji Shimada (PI)

 Jean Lu

 Karthik Srinivasan

 Inho Song

Testing Staff

 Daniel Merkely, ETI, UT

Documentation

 Randy Morris, ETI, UT

Administrative Assistant

 Anne Gigante, Org. 1543, Sandia National Laboratories

1037

Index

1038

.

.cub ... 39

A
abaqus... 759, 851

abort management ... 22

absolute value ... 997

acceleration ... 991

accuracy .. 411

acis .. 225, 235, 511

adjust boundary ... 668

advancing front .. 555, 611

align ... 293

align mesh ... 713

ambient intensity .. 155

analyze geometry .. 75, 355

angle ... 153
calculate .. 997
mesh quality .. 645, 647
perspective .. 153
units .. 991
vertex type .. 583

apply button ... 47

aprepro
conditional statement .. 1009
file inclusion... 1009
functions .. 997
if statement ... 1009
journal file .. 115
journaling .. 1013
loops ... 1009
operators ... 985
predefined variables .. 989
rules .. 981
syntax ... 979
units .. 991
variable ... 23

arc ... 251, 253

arc span ... 529

area ... 215, 645, 647

aspect ratio .. 647, 651, 653

assembly ... 69, 501, 505, 509

associativity ... 749

attributes .. 491, 493, 495
block ... 783
metadata ... 505

AutoCAD ... 225

autocenter ... 125

automatic forced sweepability 393

automatic geometry decomposition 911

automatic scheme selection 635
general notes .. 636
surfaces .. 638
vertex types ... 635
volumes ... 638

automatic size assignment 529

autosmooth ... 587

axis .. 135, 163, 201

B
background color... 147

batch ... 23

beam ... 790

bend .. 387

bias .. 543, 667, 693

bitmap ... 161

blend surfaces .. 367, 893

block ... 783
attribute .. 783
curve .. 783
element type ... 783
surface ... 783
volume .. 783

body .. 269
align .. 293
auto heal ... 359
copy .. 295
cut .. 911
healer analyze .. 355
intersect .. 305
list ... 215
merge ... 423
move ... 293, 297
reflect ... 303
rotate ... 293, 301
scale ... 299
section .. 349
separate ... 351
subtract... 307
unite ... 309

boolean
intersect .. 305
subtract... 307
unite ... 309

border ... 163

boundary condition sets .. 823

boundary conditions .. 4
feature .. 4

brick .. 279

bug reports .. 19

buttons .. 108

C
camera .. 153

cancel ... 41

cd command ... 35

ceiling ... 997

centroid area pull... 675

cfd ... 837

cgm ... 161

chamfer .. 365, 367

changing preferences .. 105

chop .. 311

Index

1039

circle .. 545

cleanup .. 557, 719

clear .. 129

clip ... 141

closestpt .. 437, 931

coarsening ... 707

cohesive element ... 913

coincident nodes .. 669

collapse
angle ... 451
curve ... 455
mesh edges... 711
surface .. 457

colors ... 147, 967

command ... 31

command echo .. 37

command line .. 31, 33

command syntax.. 31

command window .. 93

comment .. 119

composite
curves ... 435
surfaces .. 437

condition number 647, 651, 653, 683

conductivity .. 821

conformal ... 881

contact set ... 823

contact surface .. 833, 835, 879

control skew... 667

convection ... 831

coordinates .. 997

copy ... 295
body .. 295
mesh ... 631
scale ... 299
scheme ... 631

corner .. 583

cosine .. 997

create
brick .. 279
curve ... 253
cylinder.. 281
frustum .. 285
pyramid ... 287
sheet ... 260
sphere ... 289
surface .. 259
torus .. 291
vertex .. 251
volume .. 269

credits .. 1215

ctrl-c .. 41

cubit file ... 39

cubit file method... 39

cubit_geom.save.g ... 39

cubit_geom.save.sat ... 39

CUBIT_OPT .. 29

cubit-dev ... 17

curvature ... 547
sizing function ... 737

curve ... 253
bias ... 543
block ... 783
copy mesh .. 631
create ... 253
extrude ... 259
intervals .. 533
list ... 215
nodeset.. 795, 805
partitioning .. 439
plane normal to ... 319
sideset ... 795, 805
split ... 325
tangent ... 465
trim or extend.. 413
type .. 583
valence ... 67
vertex on ... 251

customize ... 43, 105, 111

cut ... 911
mesh .. 931

cylinder ... 281

D
DART ... 501, 505, 509

data filters ... 177

data structure .. 977

date ... 997

debug .. 23

decomposition ... 895
automatic .. 911
geometry .. 895
split periodic ... 327

defeaturing .. 909
detail suppression ... 909
surface removal .. 391

deformations ... 749

degrees ... 997

Delaunay ... 605

delete .. 521

density ... 821, 919, 991

detail suppression ... 909

development requests ... 19

diagonal ratio .. 653

dialog .. 47
command .. 47
options .. 105
property editor .. 89
tree view ... 69

digits ... 37

dimension ... 847

direction .. 197

displacement ... 825

Cubit 13.2 User Documentation

1040

display ... 129

display toolbar ... 101

distance ... 499

distortion .. 645, 647, 651, 653

distribution ... 9

distribution factor ... 800, 810

divergence ... 481

doubler .. 376

draw .. 135
color table ... 147
cylinder.. 317
detail ... 909
edge .. 169
group ... 467
histogram .. 657
location.. 211
nodeset ... 169, 795, 805
normal ... 135
picked ... 181
plane ... 208
vertex types ... 583

dualbias ... 543, 667

Duplicate Block Elements .. 783

duplicating ... 631

E
echo .. 221

edge collapse .. 711

edge length .. 691, 997

elastic modulus .. 821

element block .. 783

element numbering .. 973

element types .. 4

enclosure ... 798, 808

end .. 583

energy ... 991

enhancement requests .. 19

entity
curve ... 253
drawing ... 135
highlighting .. 135
labels .. 145
names ... 485
picking ... 181
selecting .. 57, 181
selection mode .. 57
specification .. 169
surface .. 259
tree .. 69
vertex .. 251
visibility.. 151
volume .. 269

environment ... 175
user settings .. 29

equal ... 549

equipotential .. 677

error count ... 997

error logging .. 37

errors ... 37, 997

execute ... 997

execute button .. 47

execution .. 23
command syntax .. 23

exit .. 21

exodus file method .. 815
element numbering ... 973
file specification .. 815
importing ... 749
model title ... 817
sizing function ... 745

exodus II .. 749, 847

exotxt .. 847

expand .. 169

export .. 855

extend ... 413

extraneous .. 389

F
facets ... 131, 519, 757

factor ... 693

farfield pressure .. 837

fastq ... 23, 1199
importing ... 237

feature angle .. 245, 481, 755

feature size ... 919

features ... 3

field function .. 745

file ... 27
acis ... 511
exodus II .. 815, 817
fastq ... 237
iges ... 515
initialization ... 27
input ... 23
journal ... 23, 115, 119

filename .. 31
step .. 513

fillet .. 365, 367, 380

find surface overlap ... 403

fire ray ... 189

firmness .. 525
interval .. 525
scheme ... 635
vertex type .. 583

flatquad ... 913

flatshade ... 131

floor ... 997

fluent .. 837, 853

flush .. 129

fly-in .. 81

force ... 393, 829, 899, 991

free elements .. 749

free mesh ... 617, 749, 765, 769

Index

1041

from ... 125, 153

frustum .. 285

fullhex .. 977

fuzzy .. 635

G
gamma .. 997

geometric entities
curve ... 253
surface .. 259
vertex .. 251
volume .. 269

geometry
analyzing ... 355
debug .. 409
decomposition ... 895
merging ... 423
validating ... 407
visibility.. 151

geometry accuracy .. 1009

geometry associativity...................................... 749, 765

geometry deletion .. 521

geometry groups .. 467

geometry representation .. 225

geometry tolerant meshing....................................... 921

geometry tweaking 365, 367, 373

grafting .. 939

granite ... 227, 517

graphics ... 4
camera .. 153
clipping plane .. 141
colors .. 147
display ... 129
draw .. 135
hardcopy ... 161
labels .. 145
mesh slicing .. 139
modes ... 131
no graphics option ... 23
options .. 163
selection .. 181
views ... 159
window size ... 157

graphics clip... 141

graphics lighting ... 155

grid-based meshing ... 949

group
graphical selection ... 471
operations ... 467
picked ... 184
propagated hex ... 473
quality ... 483

groups ... 592
sweep ... 592
xor ... 467

H
hammer icon .. 13

hard interval ... 525

hardcopy ... 161

hardware platforms ... 7

healing
analyzing geometry ... 355
attributes ... 357
automatic .. 359
failure ... 363

heat flux .. 830

help .. 23, 33, 43

hiddenline ... 131

highlight ... 135, 163

histogram ... 657, 661

history command ... 35

hole .. 378, 551

htet .. 623

hypotenuse ... 997

I
id input field ... 47

id maps ... 847

idealize.. 373

i-deas .. 761

idless journal file ... 121

ids .. 489, 997

iges .. 241, 417, 515

import235, 237, 239, 241, 243, 249, 749, 759, 761, 763,
765, 867

imprint ... 419
mesh .. 447

improve ... 246

info .. 221

initialization file ...23, 27

inlet massflow ... 837

inlet pressure .. 837

inlet velocity .. 837

input .. 855

input file .. 23

input window ... 93

inria ... 597

inside-out meshing .. 949

installation ... 9

interior mesh elements .. 141

interrupt..41, 43

intersect .. 305

interval
automatic specification.. 529
explicit specification .. 527
firmness .. 525
matching ... 533
periodic ... 537
relative .. 539

isoparameter ... 135

isoparametric .. 135

Cubit 13.2 User Documentation

1042

J
jacobian ... 647, 651, 653

journal file .. 23
APREPRO .. 1013
automatic creation ... 119
creation and playback ... 115
editor ... 97

K
key icon ... 13

key press commands ... 59

L
label ... 145

laplacian smoothing ... 679

length .. 997

license ... 9, 29

light intensity .. 155

lighting model .. 155

limit plane .. 367, 373

line width ... 163

listing information
environment .. 221
geometry ... 215
mesh ... 217
model summary ... 213
special entities ... 219
vertex types ... 583

load set .. 823

loads .. 829

locate ... 81

location .. 187

location on curve.. 193

loft ... 275

logarithm .. 997

logging ... 221

lowercase .. 997

ls command ... 35

M
magic mesh ... 857

mailing lists .. 17

make solid ... 269

mapping ... 553

mass .. 991

material .. 505, 793, 821

mathematical functions .. 997

mean ratio smoothing .. 685

measurement ... 499

memory usage ... 977

merge nodes .. 757

merge tolerance ... 419, 887

merging ... 423

examining merged entities 427
tolerance ... 429
using to verify geometry 433

mesh
collapse element ... 711
copy ... 631, 633
creation... 917
deletion ... 917
mirror .. 633
procedure ... 523
quality .. 85, 141, 657, 661
tools .. 83

mesh based geometry ... 229
adaptive .. 631
deletion ... 767
export ... 847
feature .. 3
import ... 749
meshedit ... 711
preview ... 541
remesh ... 523
slicing ... 139
transform coordinates ... 855
validity .. 721
visibility ... 151

mesh topology ... 671

meshing in item ... 901

metric name .. 657
algebraic ... 657
allmetrics .. 657
robinson.. 657
traditional .. 657

middle mouse button 53, 57, 105

midplane ... 259

mirror .. 633

mod ... 997

model axis .. 135, 163

morph smooth ... 631

mouse .. 53, 125
customization.. 105
right click .. 61
selecting entities with 57, 181
view navigation .. 53, 125

move .. 293, 297

msc .. 597, 611

multisweep .. 587

N
name ... 485

narrow regions .. 399

navigation .. 53, 125

ncdump ... 847

negative Jacobians ... 689

netcdf .. 847

new ... 39

next ... 117

node .. 709
coincident ... 669
nodehex.. 977

Index

1043

nodeset ... 795, 805
numbering ... 973
repositioning .. 709
selection .. 181

Node Redistribution ... 587

nodeset .. 795, 805
importing ... 749
repositioning .. 709
size ... 163
visibility.. 151

non-manifold topology.. 3, 671

normal ... 135, 465

notation .. 31

numbering ... 973

numeric .. 31

NumInGrp .. 997

O
offset .. 255, 259, 269, 368, 373

open .. 39

optimize jacobian smoothing 943

options ... 105

outlet pressure ... 837

output .. 855

output window .. 93

overlap... 403

P
painters .. 131

pan .. 53, 123, 125

parallel ... 641, 847

parse ... 187

part .. 501, 505, 509

partition .. 449
curves ... 439
surfaces .. 441
volumes ... 445

patch ... 797, 807

patran .. 763

pause .. 41

pave .. 555

pentagon ... 561

periodic .. 837, 1203

perspective .. 153

pick toolbar .. 57

picked group .. 71, 184

picking ... 181

pict ... 161

pillow ... 705, 963

pinpoint .. 563

planar .. 177

plane ... 203

playback .. 115

point .. 163

poisson ratio.. 821

polygonfill .. 131

polyhedron .. 565

postscript .. 161

power .. 991

ppm ... 161

preselection .. 57

pressure ... 829, 991

preview .. 211, 317, 541
axis ... 211
direction ... 200, 211
imported mesh .. 758
location ... 211
mesh .. 541
plane .. 208

primitive
brick .. 279
cylinder ... 281
frustum ... 285
prism .. 283
pyramid... 287
sphere .. 289
torus ... 291

print error .. 997

prism ... 283

problem reports ... 19

project .. 257

propagate curve bias ... 667

property editor ... 89

pwd ... 35

pyramid ... 287

Q
qtri... 625

quality
controlling skew .. 667
groups .. 483
hexahedral .. 653
quadrilaterals .. 647
tetrahedral .. 651
tools .. 85
triangles .. 645

quit .. 21

quote ... 997

R
radialmesh .. 617

radians .. 997

radius .. 997

random.. 997

randomize ... 945

ray... 189

rebar ... 787

record ... 115

references ... 1209

Cubit 13.2 User Documentation

1044

refine ... 693, 947

reflect .. 303

regularize ... 401

relative size...................................... 645, 647, 651, 653

remesh .. 523

removal .. 361, 373, 389, 391

remove .. 463, 587

remove topology .. 383

renumber ids .. 489

repositioning nodes .. 63, 709

rescan.. 997

reset .. 21

respect tetmesh ... 597

restart .. 39

restore ... 39

restraint ... 825

restraint set .. 823

resume .. 41

reversal .. 583

right click options ... 61

rotate ..53, 123, 125, 293, 301

rotation .. 301

S
save ... 39

save as .. 39

scale .. 299

scaled jacobian 645, 647, 651, 653

scheme
automatic selection .. 635
bias ... 543
circle ... 545
curvature ... 547
delaunay ... 611
dualbias ... 543
equal ... 549
featuresize .. 919
firmness .. 635
grid-based ... 949
hole ... 551
htet .. 623
inside-out .. 949
mapping .. 553
mirror .. 633
multisweep .. 587
parallel .. 641
pave .. 555
pentagon ... 561
pinpoint ... 563
polyhedron .. 565
qtri ... 625
sculpt .. 949
selection .. 635
sphere ... 569
stransition .. 571
stretch ... 575
stride ... 577
submap ... 579

sweep ... 587
tetinria .. 597
tetmesh... 597
tetmsc ... 597
tetprimitive .. 603
thex .. 627
transition ... 955
triadvance ... 611
tridelaunay .. 605
trimap ... 609
trimesh ... 611
tripave .. 613
triprimitive ... 615
whisker weave .. 963

sculpting .. 949

section .. 349

seed .. 481

selection ... 57, 169

separate ... 351, 353

session id .. 997

shape ... 645, 647, 651, 653

shear modulus .. 821

sheet ... 269

sheet body 177, 259, 353, 417

side ... 583

sideset ... 795, 805

silhouette .. 163

simplify ... 383, 459

simulog ... 597

sine ... 997

size .. 163, 693
auto .. 529
feature .. 919
interval .. 527

sizing function ... 667
bias ... 729
constant .. 735
curvature .. 737
exodus II ... 745
field ... 745
interval .. 741
inverse .. 743
linear .. 739
super .. 951
test ... 953

skeleton sizing .. 723

skew .. 346, 647, 653, 667

skew control .. 667

skinning.. 262, 781

sliver surface .. 391, 419

slot .. 378

small curves ... 395, 873

small feature .. 873, 891

small surfaces .. 397, 873

smart laplacian .. 681

smoothing
centroid area pull .. 675

Index

1045

edge length ... 691
equipotential .. 677
facets .. 231
laplacian .. 679
optimize condition number 683
optimize jacobian... 943
optimize untangle .. 689
randomize ... 945
winslow ... 687

smoothshade ... 131

soft interval .. 525

solid model .. 23

SolidDesigner .. 225

SolidWorks .. 225

sort .. 489

specific heat... 821

sphere ... 289, 569

spider .. 790

spline ... 177, 254

split
curve ... 325
periodic ... 327
surface .. 329

sqrt .. 997

start_id... 754

statelist .. 963

step ... 239, 417, 513

stitch .. 417

stop ... 41

stransition .. 571

stray .. 389

stretch.. 575, 647, 653

stride ... 577

string ... 31, 997

sub-assembly .. 501

submap .. 579

subtract .. 307

suppression ... 909

surface... 259, 269
creation ... 259
normal ... 465
overlap .. 403
removal ... 391
split ... 1009
vertex type .. 583

surface area... 997

sweep .. 259, 269, 587

sweep group .. 592

sweep surface ... 269

symmetry ... 837

syntax .. 31

T
tangent .. 465

taper .. 647, 653

target .. 374

temperature.. 827, 991

tetdice ... 597

tetinria ... 597

tetmesh ... 597

tetmsc ... 597

tetprimitive .. 603

text size... 163

thex ... 627

thicken .. 269

threshold ... 665

tile ... 1203

time ... 991

title .. 817

toggle .. 31

tolerance ... 411

tolerant imprinting.. 419

toolbars ... 101

topology .. 3

torus .. 291

tquad ... 629

transform ... 855

transition ... 955

transition map ... 571

translation ... 297

transparent .. 131

triad ... 163

triadvance ... 611

triangle coarsening .. 959

triangle visibility ... 135

tridelaunay .. 605

trim .. 413

trimap .. 609

trimesh .. 611

tripave ... 613

triprimitive ... 615

troubleshooting ... 1207

truehiddenline ... 131

tweak
curve .. 367
remove topology ... 383
surface ... 373
vertex ... 365
volume bend ... 387

U
unite .. 309

units ... 991, 997

unmerge .. 431

untangle .. 689

up command .. 125, 153

Cubit 13.2 User Documentation

1046

uppercase .. 997

usage .. 23

user environment settings 23, 29

users manual ... 1

V
valence .. 67

validation ... 407

variable .. 23

velocity .. 991

verify .. 433

version ... 37, 511

vertex .. 251

vertex type ... 583

view ... 125, 139, 153, 163

virtual geometry
deleting ... 463
simplify .. 459

visibility .. 151

void .. 500

volume ... 269
curve type ... 583
draw .. 135
in volume ... 997
measurement .. 499
partitioning .. 445
quality metrics ... 651, 653
units .. 991

W
warning .. 23, 221

warning count .. 997

webcut
chop ... 311
options .. 317
sweep ... 313
with arbitrary surface .. 323
with planar or cylindrical surface 319
with tool body.. 321

where .. 117

whisker weave .. 963

window .. 43
application .. 43
command .. 93
entity tree .. 69
input ... 93
journal file editor ... 97
output ... 93
property .. 89
query select .. 57
toolbar .. 101

windowlocation .. 157

winslow smoothing .. 687

wireframe .. 131

word count .. 997

working directory ... 35

Z
zoom .. 123, 125

